# Measurements of associated top quark production with vector bosons at ATLAS and CMS

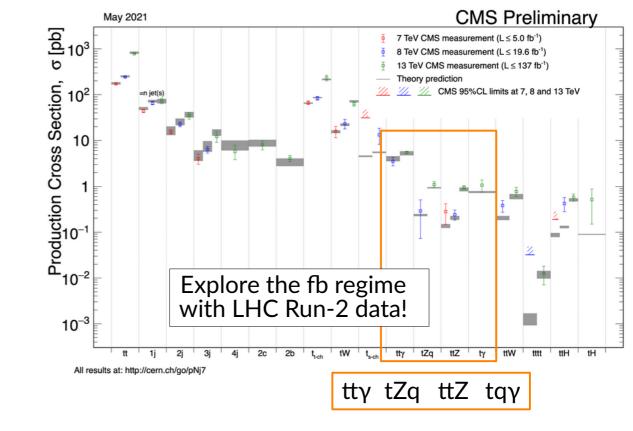
**EPS-HEP2021 Conference** 

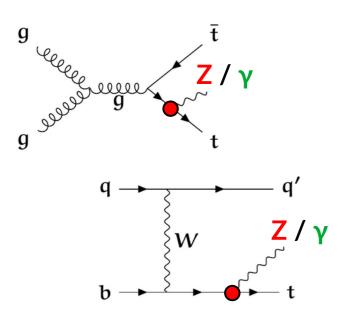
26-30 July 2021

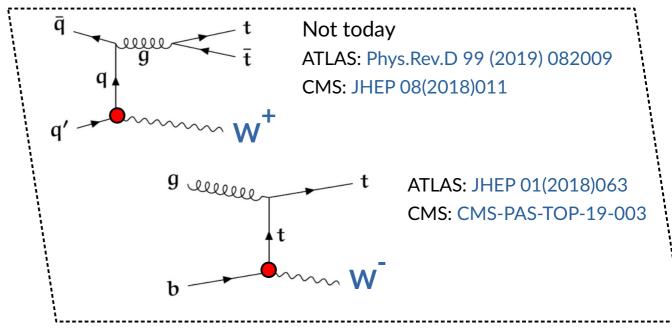
David Walter,
on behalf of the ATLAS and CMS collaborations





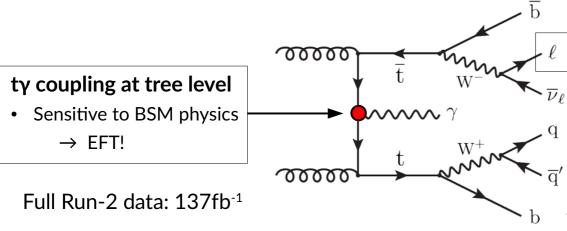




# $t(t) + Z/\gamma$

### **Electroweak couplings in top processes**

- Modified t-W, t-Z and t-γ couplings in many BSM models
  - FCNC, Z', VLQ, etc.
  - High sensitivity to Anomalous couplings
    - → High discovery potential!
- Improve t(t)X modeling as background
  - Higgs processes, tttt production, etc.

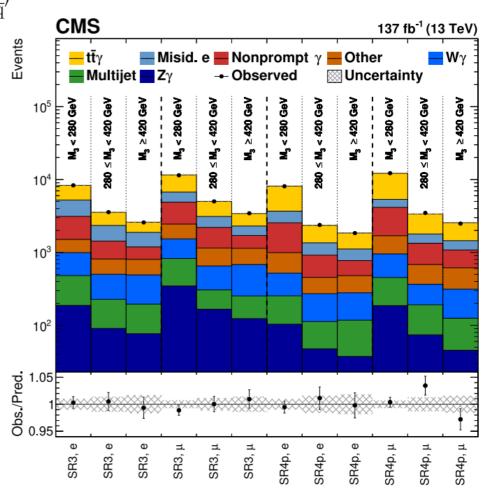









# $t\bar{t}\gamma$ inclusive and differential




### Signal (genuine) photon:

photon from ISR, top or top decay products

### Challenge: background estimation

- Electron misidentified as photon:
  - Enriched control regions included in the fit
  - Also for Wγ and Zγ
- Nonprompt photons from hadron decay:
  - ABCD method (Shower shape and isolation)
- Nonprompt leptons from QCD multijet:
  - Template from data (loosened lepton isolation)
  - Normalization from measured transfer factor



Single lepton final state



# $t\bar{t}\gamma$ inclusive and differential

### **Extracted inclusive cross section:**

$$\sigma_{\rm tt\gamma} = 800 \pm 46 ({\rm syst}) \pm 7 ({\rm stat}) \, {\rm fb}$$

< 6% uncertainty → more precise than MadGraph5\_aMC@NLO calculation!

$$\sigma_{\mathrm{tt}\gamma}^{\mathrm{MG5\_aMC@NLO}} = 770 \pm 140\,\mathrm{fb}$$

In agreement with SM prediction

Leading uncertainties

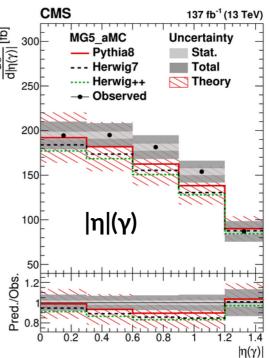
- Background normalization
- Parton shower modeling
- Jet energy scale

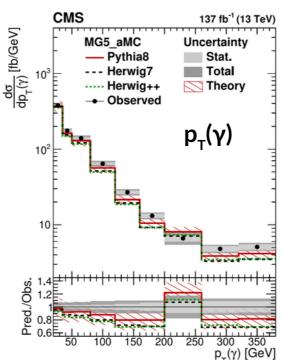
### Differential cross section measurements

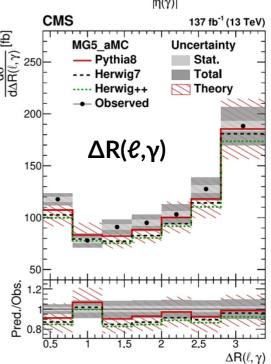
Fit repeated for each distribution

Poster

•  $p_T(\gamma)$ ,  $|\eta|(\gamma)$ ,  $\Delta R(\ell, \gamma)$ 


Unfolded to particle level


Compared to different shower models


Good agreement for Pythia8

### **EFT** interpretation

See talk from Robert Schoefbeck









# $t\bar{t}\gamma + tW\gamma$ inclusive and differential

Dilepton final state: eµ final state

• Full Run-2 data: 139 fb<sup>-1</sup>

Photon from various sources considered in simulation

· Doubly resonant production

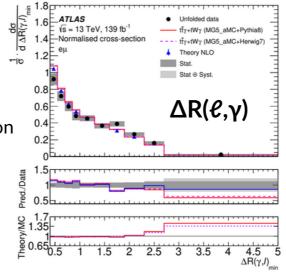
$$\begin{array}{c} pp \to b\ell\nu b\ell\nu\gamma \\ pp \to b\ell\nu\ell\nu\gamma \\ pp \to tW\gamma \end{array}$$

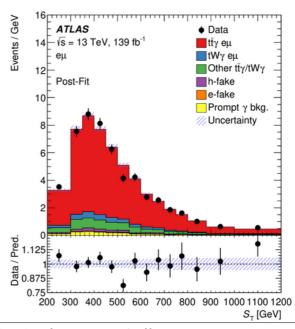
Profile maximum likelihood fit, binned in  $S_{\tau}$ 

· Measurement in fiducial phase space

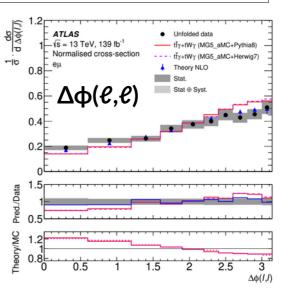
$$\sigma_{\rm fid} = 39.6^{+2.6}_{-2.2}({\rm syst}) \pm 0.8({\rm stat}) \,{\rm fb}$$

 Compared with theory prediction with off-shell top quarks (JHEP 10 (2018) 158)


$$\sigma_{\rm fid}^{\rm Theory} = 38.5^{+1.2}_{-2.5} \, {\rm fb}$$

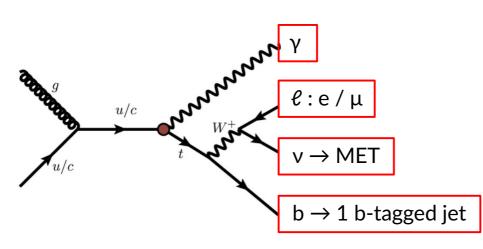

### Differential cross section measurements

Unfolded to parton level via iterative matrix inversion


- $p_T(\gamma)$ ,  $|\eta|(\gamma)$
- $\Delta \varphi(\ell, \ell)$ ,  $\Delta \eta(\ell, \ell)$
- $\Delta R_{min}(\gamma, \ell)$   $\leftarrow$  sensitive to  $t\gamma$  coupling

### < 7% uncertainty






S<sub>T</sub>: Scalar sum of all transverse momenta in the event (leptons, photons, jets, MET)



# tγ - FCNC search

### Focus on production channel:

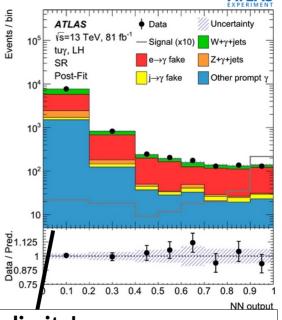


2015-2017 data: 81 fb<sup>-1</sup>

### Data driven background estimations

- Electrons fake photons
  - → Fake rates measured
- Hadrons fake photons
  - → ABCD method

### SM search by CMS:


Phys. Rev. Lett. 121 (2019) 221802

### Artificial intelligence!



### Neural network!

FCNC vs. background



### **Know your limits!**

Limits on signal strength translated into constraints on effective couplings

| - |                                                      |            | into constraints on effective coupling |      |                          |  |  |
|---|------------------------------------------------------|------------|----------------------------------------|------|--------------------------|--|--|
|   | Observable                                           | Vertex     | Coupling                               | Obs. | Exp.                     |  |  |
|   | $\left C_{uW}^{(13)*} + C_{uB}^{(13)*}\right $       | tuν        | LH                                     | 0.19 | $0.22^{+0.04}_{-0.03}$   |  |  |
|   | $\left C_{uW}^{(31)} + C_{uB}^{(31)}\right $         | EFT        | RH                                     | 0.27 | $0.27^{+0.05}_{-0.04}$   |  |  |
|   | $\left C_{uW}^{(23)*} + C_{uB}^{(23)*}\right $       | $tc\gamma$ | LH                                     | 0.52 | $0.57^{+0.11}_{-0.09}$   |  |  |
|   | $\left C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)}\right $ | tcγ        | RH                                     | 0.48 | $0.59^{+0.12}_{-0.09}$   |  |  |
|   | $\sigma(pp \to t\gamma)$ [fb]                        | tuγ        | _LH                                    | 36   | $52^{+21}_{-14}$         |  |  |
|   | $\sigma(pp \to t\gamma)$ [fb]                        | Production | RH                                     | 78   | $75^{+31}_{-21}$         |  |  |
|   | $\sigma(pp \to t\gamma)$ [fb]                        | $tc\gamma$ | LH                                     | 40   | $49^{+20}_{-14}$         |  |  |
|   | $\sigma(pp \to t\gamma)$ [fb]                        | tcγ        | RH                                     | 33   | $52^{+22}_{-14}$         |  |  |
|   | $\mathcal{B}(t \to q \gamma) [10^{-5}]$              | $tu\gamma$ | LH                                     | 2.8  | $4.0^{+1.6}_{-1.1}$      |  |  |
|   | $\mathcal{B}(t\to q\gamma)[10^{-5}]$                 | Decay      | RH                                     | 6.1  | $5.9_{-1.6}^{+2.4}$      |  |  |
|   | $\mathcal{B}(t\to q\gamma)[10^{-5}]$                 | tcγ        | LH                                     | 22   | $27^{+11}_{-7}$          |  |  |
|   | $\mathcal{B}(t\to q\gamma)[10^{-5}]$                 | tcγ        | RH                                     | 18   | 28 <sup>+12</sup> Page 6 |  |  |

77.5 fb<sup>-1</sup> (13 TeV)

# ttZ inclusive and differential

77.5 fb<sup>-1</sup> (13 TeV)

Uncertainty

Final states 3 & 4 leptons ( $e/\mu$ )

- Improved trigger strategy
- **Prompt lepton MVA!**

### Categories of jet and b-jet multiplicities

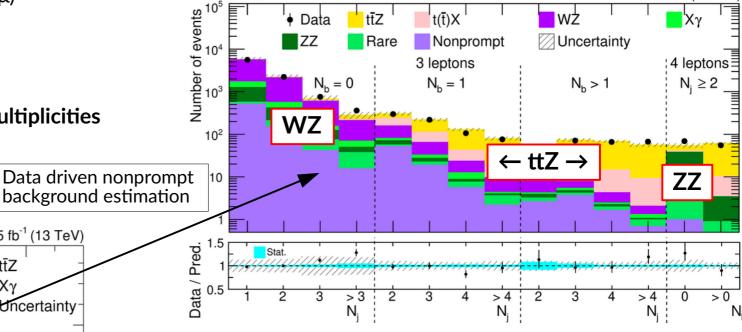
Nonprompt

WZ

50

Rare

→ Control backgrounds!


**CMS** 

Number of events / 10 GeV

Data / Pred.

400

200



### Simultaneous binned maximum likelihood fit

$$\sigma_{\rm t\bar{t}Z} = 95 \pm 6 ({\rm syst}) \pm 5 ({\rm stat}) \, {\rm fb}$$

~ 8% uncertainty

### Leading systematic uncertainties

Lepton identification

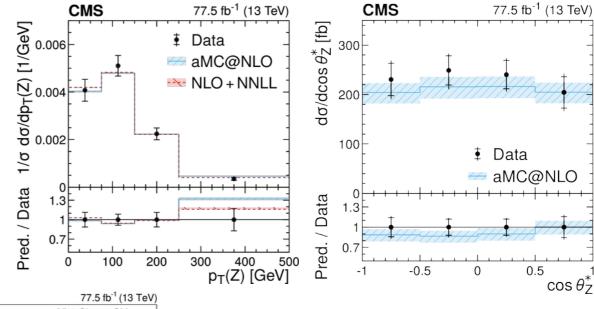
**CMS** 

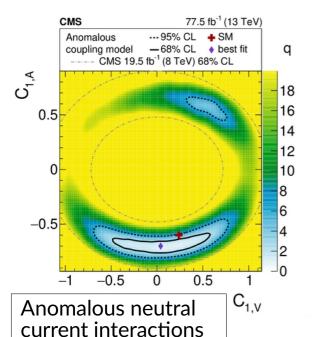
- t(t̄)X and WZ normalization
- Parton shower modeling

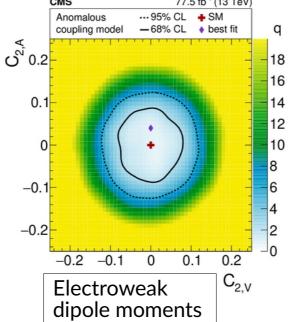
In agreement with SM predictions (Eur. Phys. J. C 80 (2020) 428)

$$\sigma_{\mathrm{t\bar{t}Z}}^{\mathrm{Theory}} = 86^{+7}_{-8}(\mathrm{scale}) \pm 2(\mathrm{PDF} + \alpha_{\mathrm{S}}) \,\mathrm{fb}$$

**DESY.** | CMS | t(t) + X (X=W/Z/y) | david.walter@cern.ch, 30/07/2021


Trailing lepton p\_ [GeV]


# ttZ inclusive and differential


### Differential cross section measurements

- Enriched signal region
- Poster

- 3ℓ, ≥3 jets, ≥1b
- Parton level
- Compared to NLO+NNLL
  - Eur. Phys. J. C 79 (2019) 249
  - Good agreement







### Anomalous couplings

- · Reweighting samples on detector level
- Fit event yields in bins of
  - N( $\ell$ ), N(j), N(b),  $p_T(Z)$  and  $cos(\theta_Z^*)$
  - At detector level
- See EFT talk from Robert Schoefbeck



# ttZ inclusive and differential

### Similar approach: $3\ell$ and $4\ell$ final states

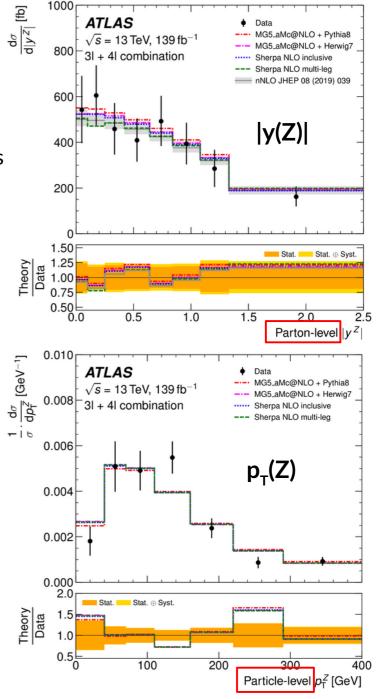
Poster

Full Run-2 data: 139 fb<sup>-1</sup>

$$\sigma_{\rm t\bar{t}Z} = 105 \pm 9 {\rm (syst)} \pm 5 {\rm (stat)} \, {\rm fb}$$

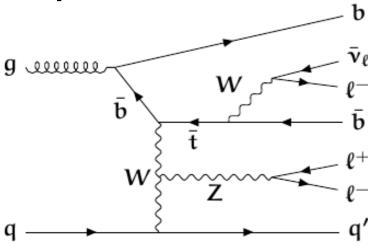
→ In agreement with CMS results and SM predictions

### Leading systematic uncertainties


~ 10% uncertainty

- Parton shower
- Modeling of tWZ, WZ and ZZ
- B tagging

|     | Variable                                  |  |  |  |  |
|-----|-------------------------------------------|--|--|--|--|
| + 4 | $p_{\mathrm{T}}^{Z}$                      |  |  |  |  |
| 36  | $ y^Z $                                   |  |  |  |  |
| 38  | $N_{ m jets}$                             |  |  |  |  |
|     | $p_{\mathrm{T}}^{\ell,\mathrm{non-}Z}$    |  |  |  |  |
|     | $ \Delta\phi(Z,t_{\mathrm{lep}}) $        |  |  |  |  |
|     | $ \Delta y(Z, t_{\text{lep}}) $           |  |  |  |  |
| 46  | $N_{ m jets}$                             |  |  |  |  |
|     | $ \Delta\phi(\ell_t^+,\ell_{\bar{t}}^-) $ |  |  |  |  |
|     | $ \Delta\phi(t\bar{t},Z) $                |  |  |  |  |
|     | $p_{ m T}^{tar{t}}$                       |  |  |  |  |


### Differential cross section measurements

- Iterative bayesian unfolding
- Absolute / normalized
- Sensitive to generator modeling, BSM effects
- Probe QCD effects
- Top p<sub>T</sub> modeling
- Probe t-Z vertex
- Spin correlation









### Final state with 3 isolated prompt leptons (e/ $\mu$ )

Full Run-2 data: 139fb<sup>-1</sup>

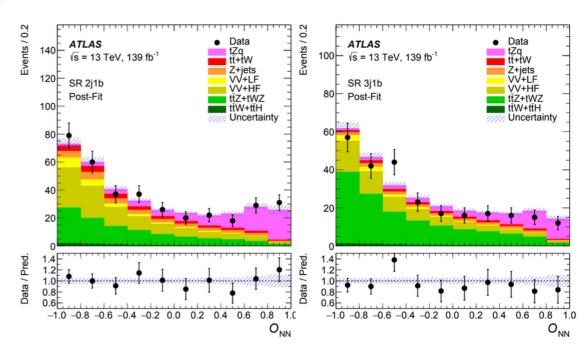
### **Challenges:**

- Backgrounds with nonprompt leptons
  - b-jet replacement
- Separation signal vs. background
  - Full event reconstruction
  - Neural network classifier

### Distinctive features

- Charge asymmetry
- Light flavor jet with high p<sub>+</sub> in forward region

### **ATLAS** inclusive cross section measurement


Simultaneous fit of 2 SR and 6 CR

$$\sigma_{\rm tZq} = 97 \pm 7 {\rm (syst)} \pm 13 {\rm (stat)} \, {\rm fb}$$

~ 15% uncertainty!

- Observation confirmed by both experiments
- In agreement with SM prediction

$$\sigma_{\mathrm{tZq}}^{\mathrm{MG5\_aMC@NLO}} = 94.2 \pm 3.1\,\mathrm{fb}$$



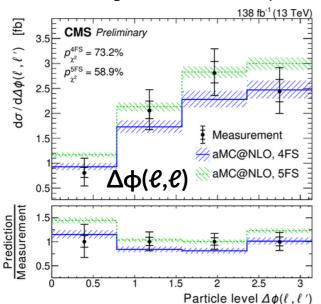


**CMS** measurements

Poster 1

Poster 2

Inclusive cross section measurement


$$\sigma_{\rm tZq} = 87.9^{+7.3}_{-6.0} ({\rm syst})^{+7.5}_{-7.3} ({\rm stat}) \, {\rm fb}$$

Including charge ratio!

< 12% uncertainty!

### First differential cross section measurements!

- · Maximum likelihood based unfolding
- 9 observables:
  - Parton/particle level Absolute/normalized
  - Good agreement with SM predictions





# First measurement of the top quark spin asymmetry in tZq!

Sensitive to anomalous couplings

$$A_{\ell} = 0.58 \pm 0.06 (\text{syst})_{-0.16}^{+0.15} (\text{stat})$$

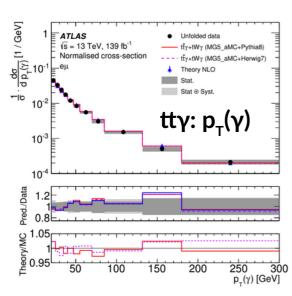
→ In agreement with SM predictions!

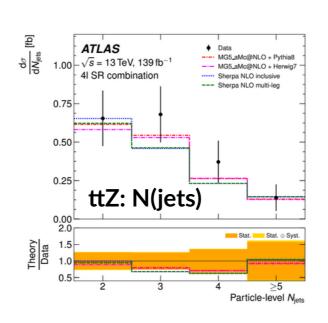
$$A_{\ell}^{\text{MG5\_aMC@NLO}} = 0.437_{-0.003}^{+0.004}$$

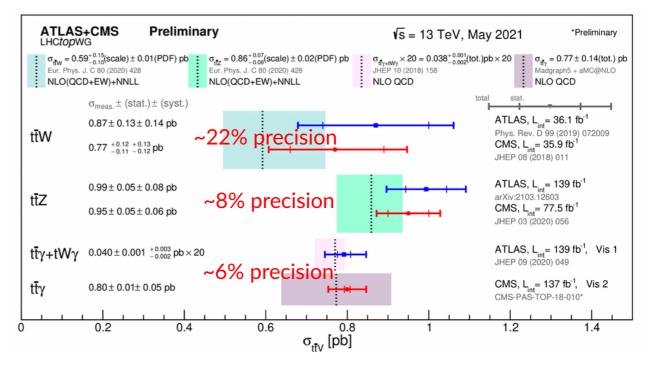
### More content:

- See talk from Luka Lambrecht
  - More on Electroweak top production in CMS
- See talk from Robert Schoefbeck
  - arXiv:2107.13896: EFT search, including tZq, ttZ and tWZarX
  - JHEP 03 (2021) 095: EFT search considering 16 WCs!

# Summary


### Measurements on $t(\bar{t})+X$ in precision era


- Going differential
- Limits on anomalous couplings
- Limits on FCNC
- Good agreement with SM


### Todo: exploit fully the Run-2 datasets

→ stay tuned!

- Improved precision
- Unexplored processes
- Combined measurements
  - Also LHC combinations



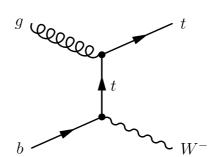


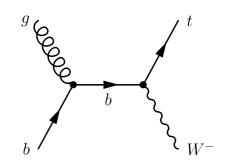


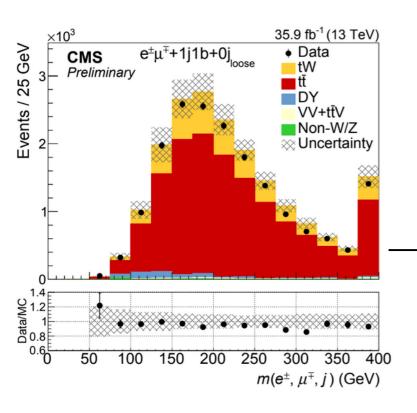


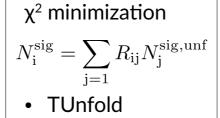
# Thanks!

# **BACKUP**

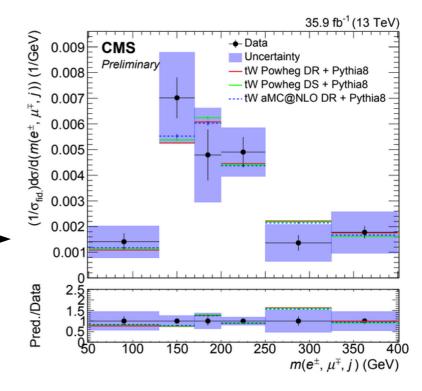




# tW


### **Differential cross section measurements**

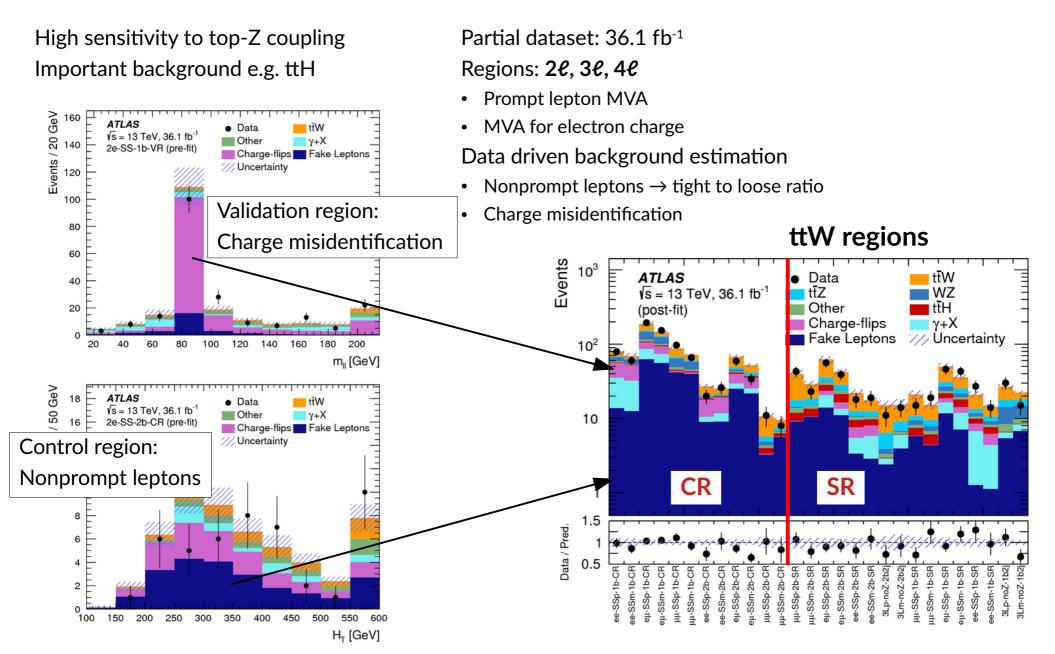

Poster

- 2016 data: 35.9 fb<sup>-1</sup>
- 1e, 1µ, 1jet (1b)
- In diagram removal (DR) scheme
- Overall good agreement with SM predictions!







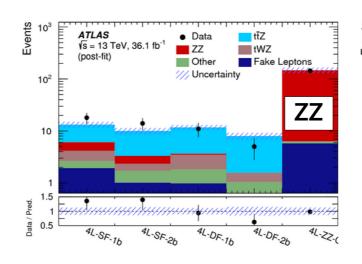



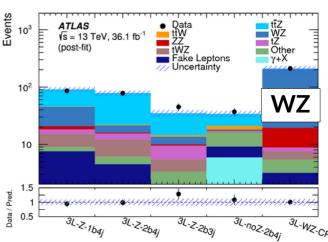

- Particle level





## Simultaneous measurement of ttZ and ttW



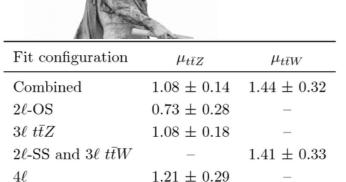




# Simultaneous measurement of ttZ and ttW

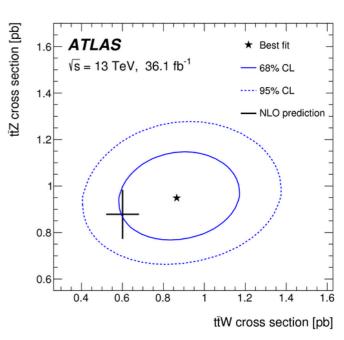
### **Control regions for**

- 3ℓ WZ: 0 b-jets
- 4ℓ ZZ: 2 Z candidates

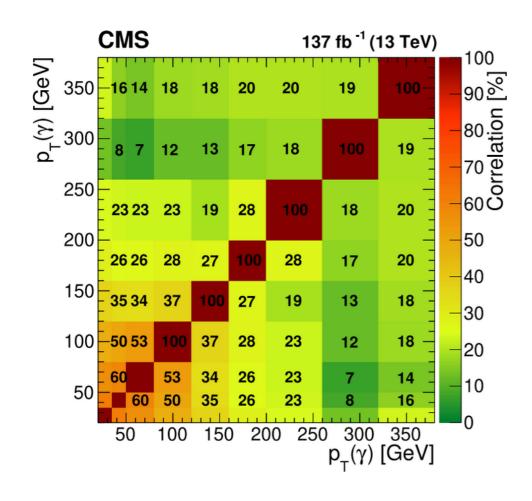


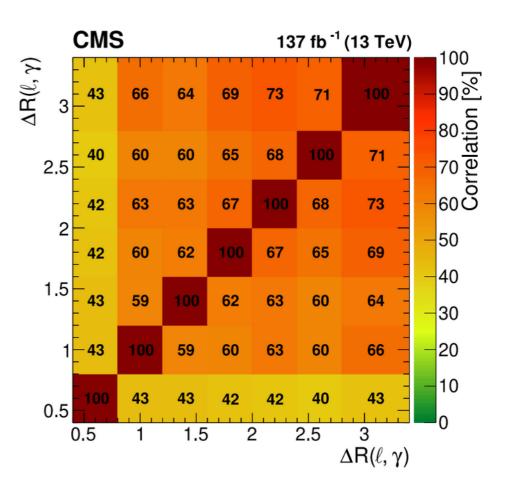



### BDTs for ttZ in 2ℓ OS region


- tt control region
- DY split in hadron flavor categories

# ATLAS \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \) \( \sigma =


### Combine and conquer!

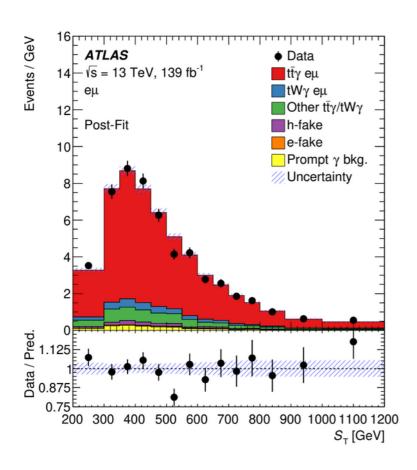


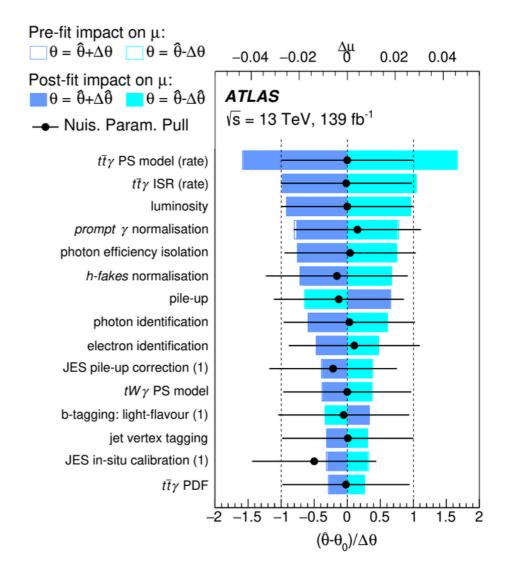

ttZ ~ 13% uncertainty ttW ~ 22% uncertainty



# t̄tγ – response matrices



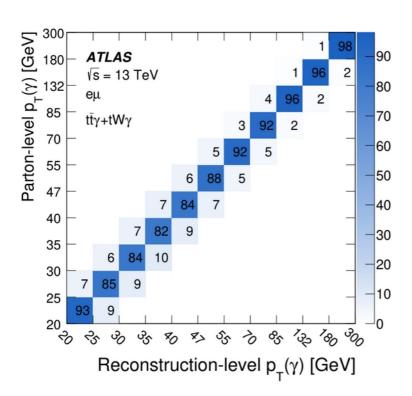



# $t\bar{t}\gamma + tW\gamma$

Fit performed on  $S_{\tau}$ :

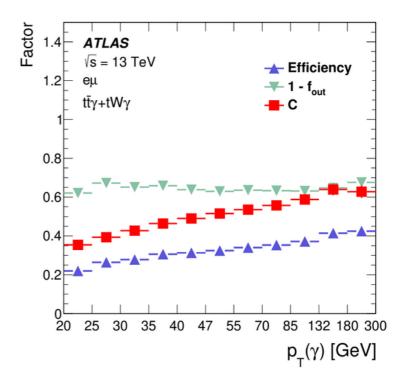
Scalar sum of all transverse momenta in the event (leptons, photons, jets, MET)








# $t\bar{t}\gamma + tW\gamma$


Migration matrix



### Correction factor C:

Take into account events outside of fiducial phase space that pass event reconstruction

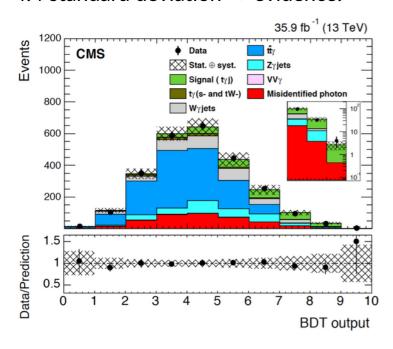
$$f_{
m out} = rac{N_{
m reco}^{
m non-fid}}{N_{
m reco}}, \qquad \epsilon = rac{N_{
m reco}^{
m fid}}{N_{
m MC}^{
m fid}} \qquad \Rightarrow C = rac{\epsilon}{1-f_{
m out}} = rac{N_{
m reco}}{N_{
m MC}^{
m fid}}$$

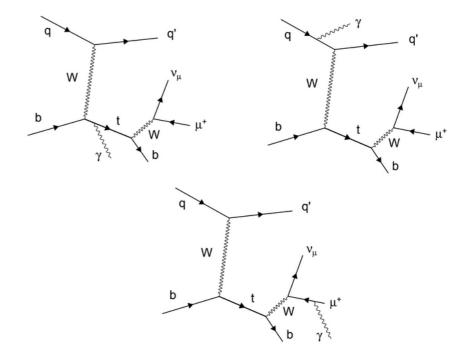




# tqγ

### Standard model search


- 2016 data: 35.9 fb<sup>-1</sup>
- 1 μ, 1 γ, ≥2 jets (1 b), p<sub>T</sub><sup>Miss.</sup>


### BDT to separate signal from background

- High  $p_{T}$  light flavor forward jet
- Top quark polarization, ...

$$\sigma_{\rm tq\gamma,\ t\to\mu\nu b} = 115 \pm 30 (\rm syst) \pm 17 (\rm stat) \, fb$$

### 4.4 standard deviation → evidence!







# tqγ – search for FCNC

### Search region:

- 1 Muon/Electron
- 1 Photon
- = 1 b jet and not further jet
- $p_T^{Miss.} > 30 \text{ GeV}$

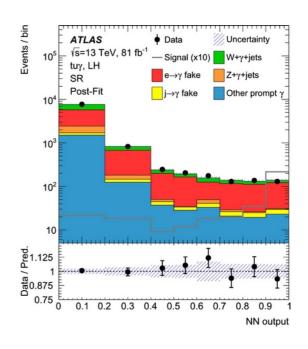
Electron fakes photon - data driven

• Measurement of fake rate

 $Z \rightarrow ee vs. Z \rightarrow e\gamma$ 

Hadron fakes photon - data driven

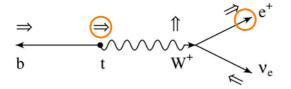
 Normalization with ABCD method shower shape vs. isolation

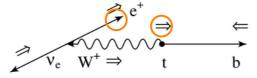

**EFT** 

Neural network

Signal (FCNC) vs. background

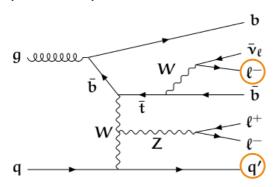
**Production** 


Decay




| Observable                                                   | Vertex     | Coupling | Obs. | Exp.                   |
|--------------------------------------------------------------|------------|----------|------|------------------------|
| $\left C_{\text{uW}}^{(13)*} + C_{\text{uB}}^{(13)*}\right $ | tuγ        | LH       | 0.19 | $0.22^{+0.04}_{-0.03}$ |
| $\left C_{uW}^{(31)} + C_{uB}^{(31)}\right $                 | $tu\gamma$ | RH       | 0.27 | $0.27^{+0.05}_{-0.04}$ |
| $\left C_{\text{uW}}^{(23)*} + C_{\text{uB}}^{(23)*}\right $ | tcγ        | LH       | 0.52 | $0.57^{+0.11}_{-0.09}$ |
| $\left C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)}\right $         | tcγ        | RH       | 0.48 | $0.59_{-0.09}^{+0.12}$ |
| $\sigma(pp \to t\gamma)$ [fb]                                | $tu\gamma$ | LH       | 36   | $52^{+21}_{-14}$       |
| $\sigma(pp \to t\gamma)$ [fb]                                | $tu\gamma$ | RH       | 78   | $75^{+31}_{-21}$       |
| $\sigma(pp \to t\gamma)$ [fb]                                | tcγ        | LH       | 40   | $49^{+20}_{-14}$       |
| $\sigma(pp \to t\gamma)$ [fb]                                | tcγ        | RH       | 33   | $52^{+22}_{-14}$       |
| $\mathcal{B}(t \to q \gamma) [10^{-5}]$                      | tuγ        | LH       | 2.8  | $4.0^{+1.6}_{-1.1}$    |
| $\mathcal{B}(t\to q\gamma)[10^{-5}]$                         | $tu\gamma$ | RH       | 6.1  | $5.9^{+2.4}_{-1.6}$    |
| $\mathcal{B}(t\to q\gamma)[10^{-5}]$                         | tcγ        | LH       | 22   | $27^{+11}_{-7}$        |
| $\mathcal{B}(t\to q\gamma)[10^{-5}]$                         | tcγ        | RH       | 18   | $28^{+12}_{-8}$        |

# tZq – top quark spin asymmetry


Lepton from top quark (antiquark) decay prefers to travel alongside (against) the top quark (antiquark) spin





Polarization angle defined in "optimized basis"

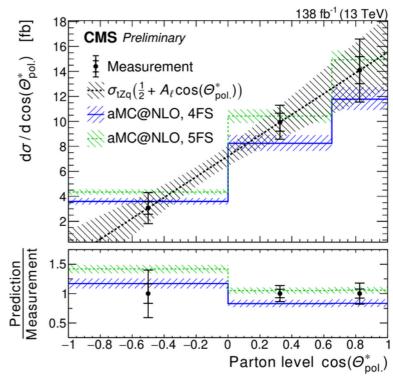
Spectator quark serves as reference



$$cos(\theta_{pol}^{\star})$$

$$=$$

$$\vec{p}(q'^{\star}) \cdot \vec{p}(\ell_{t}^{\star})$$


$$|\vec{n}(q'^{\star})| |\vec{n}(\ell^{\star})|$$

Spin asymmetry  $A_e = 1/2^*P^*a_e$  related as

$$\frac{d\sigma}{d\cos(\theta_{\text{pol}}^{\star})} = \sigma_{\text{tZq}} \left( \frac{1}{2} + A_{\ell} \cos(\theta_{\text{pol}}^{\star}) \right)$$

Fit re parameterized and spin asymmetry measured as

$$A_{\ell} = 0.58 \pm 0.06 (\text{syst})_{-0.16}^{+0.15} (\text{stat})$$



$$A_{\ell}^{\text{MG5\_aMC@NLO}} = 0.437_{-0.003}^{+0.004}$$