

Evidence for four-top-quarks production with the ATLAS detector at the Large Hadron Collider

Paolo Sabatini^(a), on behalf of the ATLAS Collaboration

^(a) Instituto de Física Corpuscolar, Valéncia (CSIC/UV)

EPS-HEP 2021

T07: Top and Electroweak Physics

30/07/2021

Four top-quark production

The production of four-top quark is one of the rarest events involving top-quarks in the final state. Very interesting test of SM validity which describes the top-quark sector over 5 orders of magnitude!

JHEP 02 (2018) 031
$$\sigma_{t\bar{t}t\bar{t}} = 12 \pm 20 \% \,\text{fb}$$

Interesting for many reasons

Four top-quark production is sensitive to top-Yukawa coupling.

It provides an orthogonal investigation with respect to $t\bar{t}H$ measurement

Phys. Rev. D 95 053004

Many Beyond Standard Model (BSM) scenarios provide large enhancement of the cross-section

In the context of EFT, this production is parametrised by a $t\bar{t}t\bar{t}$ contact-interaction term

- Phys. Rev. D 99 113003

SUSY

Phys. Report 110 (1984) 1-2 Phys. Lett. B 76 (1978) 5

1802.07237

Detection channels and process signature

Each top-quark in the final state can decay leptonically or hadronically, leading to many possible detection channels.

Same-sign dilepton + multi-lepton channel (SSML) EPJC 80 (2020) 1085

Corresponding to ~12% of total events.

Facing with modelling of $t\bar{t} + V$ at large b-jet multiplicity Dealing with many sources of instrumental backgrounds

Single lepton + opposite-sign dilepton channel (1L2LOS)

Corresponding to ~60% of total events.

Background dominated by $t\bar{t}$ production associated with large jet heavy-flavour radiation

How can we separate $t\bar{t}t\bar{t}$ from the total background?

[SSML] Analysis strategy

Analysis exploiting the full ATLAS Run 2 dataset (139 fb⁻¹)

Selections:

- 2 same-sign leptons or \geq 3 leptons (e/ μ)
- \geq 6 jets (of which \geq 2 b-tagged)
- $H_T = \sum p_T > 500 \, \text{GeV}$

Irreducible backgrounds: top pairs production associated with bosons

Significant contribution of fake/non-prompt leptons Two main goals: signal separation and robust background estimation (next slide)

A Boosted-Decision-Tree classifier is trained to optimise signal-vs-background separation

- BDT score used as discriminating variable in SR for profile likelihood fit
- BDT score outperforming with respect to any other variable
- B-tagging information most important feature

[SSML] Instrumental background estimation EPJC 80 (2020) 1085

Non-prompt leptons background & conversions estimated through template method Dedicated control region at low E_T^{miss} to control these source of backgrounds

Material & γ^* conversions

- Charge mis-identification estimated with Z(ee) events by measuring the charge mis-id. efficiency

Leptons from heavy-flavours (HF) decays

[SSML] Irreducible background estimation EPJC 80 (2020) 1085

Dedicated control region (CR ttW) to measure $t\bar{t}W$ normalisation and constrain the modelling.

pure validation region.

- - ttW with 7 (≥8) jets: 130 (300) %
 - ttW with 3 (≥4) b-jets: 50 %

- Dominant contribution among the irreducible background from $t\bar{t}W$ production: template method.
- Goodness of $t\bar{t}W$ modelling checked in a looser region, exploiting $t\bar{t}W$ charge asymmetry to make a

[SSML] Results

A profile-likelihood fit is performed in control and signal regions simultaneously. Normalization factors of the background sources are fitted together with the signal strength $\mu_{t\bar{t}t\bar{t}}$

- lacksquare
- Other NFs not significantly far from unity.

$$\sigma_{t\bar{t}t\bar{t}}^{SSML} = 24 \, {}^{+5}_{-5} \, \text{(stat.)} \, {}^{+5}_{-4} \, \text{(syst.)} = 24 \, {}^{+7}_{-6} \, \text{fb}$$

Observed (exp.) significance over background: **4.3 (2.4)** σ

First evidence of four-top production!

EPJC 80 (2020) 1085

Only ttW NF significantly higher than expected, but compatible with previous ATLAS results, eg ttH(ML) [ATLAS-CONF-2019-045]

[1L2LOS] Analysis strategy Here 1L, 2LOS in backup ≥5b Analysis exploiting the full ATLAS Run 2 dataset (139 fb⁻¹) 4b Selections for 1L (2LOS): 3bV Validation regions • 4-top signature: 10 (8) jets (of which 4 b-jets) 3bH **Control regions** \geq 8 (6) jets of which (of which \geq 3 b-tagged) 3bL 2-b-jets regions used for background estimation 2b $t\bar{t}$ +jets kinematic reweighting regions Regions are defined with increasing jet and b-jet multiplicity. 8j 7j **ATLAS** Simulation tttt Dominant background: top pair production associated to $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ tt+b ∎tī+≥3b ∎non-tī large (heavy-flavour) jet radiation $- t\bar{t}bb$ contribution 0.8 Categorisation of $t\bar{t}$ +jets in terms of flavour of the Relative radiation, based on truth information. 0.6 **3bL**(oose), **3bH**(igh) **and 3bV**(alidation) are orthogonal and 0.2

defined by using different b-tagging working points. From 3bL to 3bV, $t\bar{t} + \geq 1b$ increases!

9j

≥10j,3bH

8j,3bV

≥10j,3bV

9j,3bV

8j,3bH

≥10j,3bL

9j,3bL

8j,3bL

9j,3bH

∃tt+light

≥10j,4b

8j,≥5b

9j,4b

8j,4b

tt+B

[1L2LOS] Background estimation

Significant mismodelling of $t\bar{t}$ background in the analysis regions (both normalisation and shape)

1. Flavour rescaling

 $t\bar{t}$ + light, $t\bar{t}$ + $\geq 1c$ and $t\bar{t}$ + $\geq 1b$ are fitted to data in looser regions with $\geq 8 (\geq 6)$ jets for 1L (2LOS)

Four regions used: 2b, 3bL, 3bH and ≥4b

Large correction factors: $t\bar{t} + \geq 1c$ (1b) get approx. 60% (30%) increase

2. Sequential kinematic reweighing

Total $t\bar{t}$ is reweighed to data in regions with 2 b-jets as a function of:

- Jet and reclustered jet mulitplicities
- $H_T^{all,red}$: sum of the p_T of all jets in the events "normalized" by the number of jets
- ΔR^{JJ}_{avo} : average angular distance between jets

Improved agreement and reduced uncertainties.

2106.11683

[1L2LOS] Fit setup and systematic model

A total of **21** regions (12 in 1L + 9 in 2LOS) are considered in the fit.

Including 6 validation regions (3bV)

3bV regions are used to validate the $t\bar{t}$ +jets modelling closest to the signal region.

 H_T^{all} used for the profile likelihood fit in all control regions. Boosted Decision Trees score is used in signal-regions.

Very complex systematic model to account for mismodelling in this extreme phase-space (more in the backup)

- All instrumental systematic uncertainties are included. • Inflated modelling uncertainties for non- $t\bar{t}$ background • Detailed systematic model for $t\bar{t}$ modelling (45 nuisance parameters) Additional uncertainty associated to heavy-flavour radiation.
- - 4FS vs 5FS additional uncertainty
 - All uncertainties split in terms of radiation flavour.
 - 2-point systematics split in shape and migration

[1L2LOS] Results

Excellent post-fit agreement with data in all regions

 $\sigma_{t\bar{t}t\bar{t}}^{1L2LOS} = 24 \,{}^{+8}_{-8} \,(\text{stat.}) \,{}^{+15}_{-13} \,(\text{syst.}) = 24 \,{}^{+17}_{-15} \,\text{fb}$

Corresponding to **2.2** times the SM crosssection (compatible within 1 std. dev.)

Observed (exp.) significance of the signal over background: **1.9 (1.0)**

Well compatible with SSML results.

Most important systematics:

- Signal modelling (parton-shower & cross-section)
- $t\bar{t}b\bar{b}$ 4FS/5FS & $t\bar{t} + \geq 1c$ normalisation uncertainties
- Light jet mis-tag rate

2106.11683

Combination

The two results from SSML and 1L2LOS are combined.

Most dominating systematics are totally different: limited impact of systematics correlations.

Instrumental systematics are fully correlated, as well as non- $t\bar{t}$ and non- $t\bar{t}W$ modelling uncertainties

SSML result dominates in the combination.

 $\sigma_{t\bar{t}t\bar{t}}^{1L2LOS/SSML} = 24 + 4 - 4 \text{ (stat.)} + 5 - 4 - 4 \text{ (syst.)} = 24 + 7 - 6 \text{ fb}$ tttt

Observed (expected) significance 4.7 (2.6) std. deviation. Improved result with respect the single channels.

Conclusions

The latest ATLAS results on the measurements of SM four top-quark production are presented. Two analyses performed with the full Run2 dataset in different channels

ATLAS+CMS Preliminary Run 2, √s = 13 TeV, May 2021 LHC*top*WG $\sigma_{t\bar{t}t\bar{t}} = 12.0 + 2.2$ tot. stat. JHEP 02 (2018) 031 NLO QCD+EW $\sigma_{ttt} \pm tot. (stat. \pm syst.)$ Obs. (Exp.) Sig. ATLAS, 2LSS/3L, 139 fb⁻¹ $24_{-6}^{+7} (5_{-6}^{+5})$ fb 4.3 (2.4) σ EPJC 80 (2020) 1085 ATLAS, 1L/2LOS, 139 fb⁻¹* - 26^{+17}_{-15} (8⁺¹⁵₋₁₃) fb − 1.9 (1.0) σ ATLAS-CONF-2021-013 ATLAS, comb., 139 fb⁻¹* $24_{-6}^{+7} (4_{-4}^{+5}) \text{ fb}$ 4.7 (2.6) σ ATLAS-CONF-2021-013 CMS, 2LSS/3L, 137 fb⁻¹ 12.6 ^{+5.8} _{-5.2} fb EPJC 80 (2020) 75 CMS, 1L/2LOS, 35.8 fb⁻¹ 0 ⁺²⁰ fb JHEP 11 (2019) 082 *Preliminary ____ 0 20 40 80 σ_{fff} [fb]

Same-sign dilepton and trilepton channel (SSML) First observed **evidence** of the four-top quark production, with a significance of **4.3** std. deviations. Single lepton and opposite-sign dilepton channel (1L2LOS) Observed significance of **1.9** std. deviations, in line with the SSML results. Combination of 1L2LOS + SSML Dominated by SSML channel result: $\sigma_{t\bar{t}t\bar{t}}^{1L2LOS/SSML} = 24 + \frac{7}{6}$ fb Cross-section is compatible within 2 std. dev. with SM predictions

The $t\bar{t}t\bar{t}$ is not a mystery anymore: time for refined analyses, more stats (Run3) and interpretation!

Thanks a lot for the attention!!

Backup

[SSML] Region definition

Region	Channel	N_j	N_b	Other requirements	Fitted variable
SR	2LSS/3L	≥ 6	≥ 2	$H_{\rm T} > 500$	BDT
CR Conv.	$e^{\pm}e^{\pm} e^{\pm}\mu^{\pm} $	$4 \le N_j < 6$	≥ 1	$m_{ee}^{\text{CV}} \in [0, 0.1 \text{ GeV}]$	$m_{ee}^{\rm PV}$
				$200 < H_{\rm T} < 500 {\rm GeV}$	
CR HF e	eee eeµ	_	= 1	$100 < H_{\rm T} < 250 {\rm ~GeV}$	counting
CR HF μ	$e\mu\mu\parallel\mu\mu\mu$	_	= 1	$100 < H_{\rm T} < 250 {\rm ~GeV}$	counting
CR ttW	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm} $	≥ 4	≥ 2	$m_{ee}^{\rm CV} \notin [0, 0.1 \text{ GeV}], \eta(e) < 1.5$	$\Sigma p_{\mathrm{T}}^\ell$
				for $N_b = 2$, $H_T < 500$ GeV or $N_j < 6$	
				for $N_b \ge 3$, $H_T < 500$ GeV	

EPJC 80 (2020) 1085

[SSML] Pre-fit plots

[SSML] ttW enhancement

Number of ttW events in SR (BDT > 0):

NP	Value	ttW increase	
NF	1.6 ± 0.3	60%	
ttW w/ 7 jets	$0.18^{+0.73}_{-0.61}$	22%	
ttW w/ ≥8 jets	$0.22^{+0.56}_{-0.42}$	65%	

Pre-fit Post-fit 12.4 ± 8.8 23.2 ± 10.1

[1L2LOS] Radiation categorisation

Categorisation of $t\bar{t}$ +jets in terms of flavour of the radiation:

- $t\bar{t} + \ge 3b$: all the other cases with ≥ 1 b hadron in the jet radiation • $t\bar{t} + b\bar{b}$: the jet radiation contains at ≥ 2 particle jets matching with 2 b hadrons
- $t\bar{t} + \geq 1c$: the jet radiation contains ≥ 1 particle jet matching with • $t\overline{t} + B$: the jet radiation contains 1 particle jets matching with 2 b hadrons \geq 1 c-hadron and no b-hadrons
- $t\bar{t} + b$: the jet radiation contains 1 particle jets matching with 1 b hadron $t\bar{t} + \geq 1c$: no particle jets are matched with b- or c-hadrons •

[1L2LOS] 2LOS regions and composition

[1L2LOS] Top pair systematics model

Uncertainty source	Description	Components (number)	
$t\bar{t}+\geq 1b$ normalisation $t\bar{t}+\geq 1c$ normalisation	±50% ±50%	$t\overline{t}+b, t\overline{t}+b\overline{b}, t\overline{t}+B, t\overline{t}+\geq 3b$ (4) $t\overline{t}+\geq 1c$ (1)	
Generator choice	Powheg vs MadGraph5_aMC@NLO	$(t\bar{t}+\text{light}, t\bar{t}+\geq 1c, t\bar{t}+b, t\bar{t}+b\bar{b}, t\bar{t}+B, t\bar{t}+\geq 3b)$ \otimes (shape, migration) (12)	
PS choice	Pythia 8 vs Herwig 7	$(t\bar{t}+\text{light}, t\bar{t}+\geq 1c, t\bar{t}+b, t\bar{t}+b\bar{b}, t\bar{t}+B, t\bar{t}+\geq 3b)$ \otimes (shape, migration) (12)	
Renormalisation scale	Varying μ_r in Powneg	$t\bar{t}$ +light, $t\bar{t}$ + $\geq 1c$, $t\bar{t}$ + $\geq 1b$ (3)	
Factorisation scale	Varying $\mu_{\rm f}$ in Powheg	$t\bar{t}$ +light, $t\bar{t}$ + $\geq 1c$, $t\bar{t}$ + $\geq 1b$ (3)	
ISR	Varying $\alpha_{\rm S}^{\rm ISR}$ (PS) in Pythia 8	$t\bar{t}$ +light, $t\bar{t}$ + $\geq 1c$, $t\bar{t}$ + $\geq 1b$ (3)	
FSR	Varying $\mu_{\rm f}$ (PS) in Pythia 8	$t\bar{t}$ +light, $t\bar{t}$ + $\geq 1c$, $t\bar{t}$ + $\geq 1b$ (3)	
5FS vs 4FS	PowhegBoxRes (4FS) vs PowhegBox (5FS)	$t\bar{t}+b, t\bar{t}+b\bar{b}, t\bar{t}+B, t\bar{t}+\geq 3b$ (4)	

[1L2LOS] 3b region flavour splitting

Classification made by making use of different working point of the b-tagging algorithm

- **3bL**: 3 b-tagged jets at 70% but with low scores of the b-tagging classifier
- **3bH**: 3 b-tagged jets at 70% but with intermediate scores of the b-tagging classifier
- **3bV**: 3 b-tagged jets at 70% but with high scores of the b-tagging classifier

Name	$N_b^{60\%}$	$N_b^{70\%}$	$N_b^{85\%}$
2b	-	= 2	_
3bL	≤ 2	= 3	-
3bH	= 3	= 3	= 3
3bV	= 3	= 3	≥ 4
\geq 4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

