

#### PROBING EFT TOP QUARK PRODUCTION

R. Schöfbeck, July 30<sup>th</sup>, 2021 on behalf of the CMS Collaboration





# TOP CROSS SECTION MEASUREMENTS AT CMS

- No clear sign of new physics (BSM) at LHC so far...
- Future facilities increase  $\int L$ , not  $\sqrt{s}$
- top quark measurements are now systematics limited
- Many BSM theories predict deviations of top quark's couplings

Theme of EFT measurements: Reveal indirect and widely dispersed hints of new physics in precision measurements

Today: 3 new EFT results

top quarks with additional leptons [CMS-TOP-19-001] t/tt+Z in 3l with ML [CMS-TOP-21-001] ttX differential cross section [CMS-TOP-18-010]

CMS

- For the SM aspects, consider these talks:
  - D. Walter: top EWK couplings] [L. Lambrecht: top EWK production at CMS]



#### **OPERATORS AND PHYSICS IMPLICATIONS**







#### • Data set: 41.5 fb<sup>-1</sup> from 2017

- Testing 16 operators; two groups
  - ttV(V): affecting:ttH, tHq, ttZ, ttW
  - with 7 four-fermion operators : ttll, ttlv
- 35 signal regions in total
  - lepton channels split further in jet and b-tag multiplicities
    - "inclusive approach"
  - 2l (same-sign): ttW and ttH processes
  - 3I (with and w/o Z candidate): ttZ(3I), tZq (ttll, tllq, ttlv)

ttZ(4l)

4l (no further binning):

| 2 quarks                         | <u>s + bosons</u>                                                                                                          |                                                              |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Operator                         | Definition                                                                                                                 | Lead processes affected                                      |
| $O_{u\varphi}^{(ij)}$            | $\overline{\mathbf{q}}_{i}\mathbf{u}_{i}\tilde{\mathbf{\phi}}_{i}(\mathbf{\phi}^{\dagger}\mathbf{\phi})$                   | tīH, tHq                                                     |
| $O^{1(ij)}_{arphi \mathrm{q}}$   | $(\varphi^{\dagger} \overrightarrow{iD}_{\mu} \varphi) (\overline{\mathbf{q}}_{i} \gamma^{\mu} \mathbf{q}_{j})$            | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$ |
| $O^{3(ij)}_{arphi \mathrm{q}}$   | $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{\mathbf{q}}_{i}\gamma^{\mu}\tau^{I}\mathbf{q}_{i})$ | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$ |
| $O_{arphi \mathrm{u}}^{(ij)}$    | $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{\mathbf{u}}_{i}\gamma^{\mu}\mathbf{u}_{j})$             | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tl\bar{l}q$      |
| $O_{\varphi ud}^{(ij)}$          | $(\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\overline{\mathrm{u}}_{i}\gamma^{\mu}\mathrm{d}_{j})$                          | tīH, tllq, tHq                                               |
| $O_{uW}^{(ij)}$                  | $(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \tau^I \mathbf{u}_j)  \tilde{\varphi} \mathbf{W}^I_{\mu\nu}$                     | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$ |
| $O_{\rm dW}^{(ij)}$              | $(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \tau^I \mathbf{d}_j) \varphi \mathbf{W}^I_{\mu\nu}$                              | tīH, tīllī, tHq, tllīq                                       |
| $O_{uB}^{(ij)}$                  | $(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \mathbf{u}_j)  \tilde{\varphi} \mathbf{B}_{\mu\nu}$                              | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$ |
| $^{\ddagger}O_{C}^{(ij)}$        | $(\overline{\mathbf{q}}_{i}\sigma^{\mu\nu}T^{A}\mathbf{u}_{i}) \tilde{\varphi}G^{A}_{\mu\nu}$                              | tīH, tīlv, tīlī, tHa, tlīa                                   |
| uG                               | (1) =                                                                                                                      | ,,,,                                                         |
| 2 quark                          | <u>s + 2 leptons</u>                                                                                                       |                                                              |
| Operator                         | Definition                                                                                                                 | Lead processes affected                                      |
| $O_{\ell q}^{1(ijkl)}$           | $(\overline{\ell}_i\gamma^\mu\ell_j)(\overline{\mathrm{q}}_k\gamma^\mu\mathrm{q}_\ell)$                                    | $t\bar{t}l\nu$ , $t\bar{t}l\bar{l}$ , $tl\bar{l}q$           |
| $O_{\ell q}^{3(ijkl)}$           | $(\overline{\ell}_i \gamma^\mu \tau^I \ell_j) (\overline{\mathbf{q}}_k \gamma^\mu \tau^I \mathbf{q}_\ell)$                 | $t\bar{t}l\nu$ , $t\bar{t}l\bar{l}$ , $tl\bar{l}q$           |
| $O_{\ell \mathrm{u}}^{(ijkl)}$   | $(\overline{\ell}_i\gamma^\mu\ell_j)(\overline{\mathrm{u}}_k\gamma^\mu\mathrm{u}_\ell)$                                    | tīlī                                                         |
| $O_{ m e \overline{q}}^{(ijkl)}$ | $(\overline{\mathrm{e}}_i\gamma^\mu\mathrm{e}_j)(\overline{\mathrm{q}}_k\gamma^\mu\mathrm{q}_\ell)$                        | tītlī, tllq                                                  |
| $O_{ m eu}^{(ijkl)}$             | $(\overline{\mathrm{e}}_i\gamma^\mu\mathrm{e}_j)(\overline{\mathrm{u}}_k\gamma^\mu\mathrm{u}_\ell)$                        | tīlī                                                         |
| $O_{\ell equ}^{1(ijkl)}$         | $(\overline{\ell}_i \mathbf{e}_j)  \varepsilon  (\overline{\mathbf{q}}_k \mathbf{u}_\ell)$                                 | tītlī, tllq                                                  |
| $O_{\ell equ}^{3(ijkl)}$         | $(\overline{\ell}_i \sigma^{\mu\nu} \mathbf{e}_j) \varepsilon (\overline{\mathbf{q}}_k \sigma_{\mu\nu} \mathbf{u}_\ell)$   | $t\bar{t}l\nu$ , $t\bar{t}l\bar{l}$ , $tl\bar{l}q$           |

- Backgrounds for 2lss
  - Non-prompt lep & charge mis-id
  - Estimated in tt and DY CR
  - FR/misid measurements
- 3l/4l signal regions:
  - dominant diboson background
- Main systematics:
  - Theory ( $\mu_{\mathsf{R},\mathsf{F}}$ ) and modelling
  - Experimental: Jet energy scale, lepton identification and isolation, luminosity
- Obtain 1D and 2D profiled and individual limits from likelihood fit





[CMS-TOP-19-001]



- Good agreement of all WCs with the SM prediction
  - $c_{tW}$ ,  $c_{t\phi}$ ,  $c_{tG}$  just outside the 2 $\sigma$  when all other WC are zero





# MVA-EFT SEARCH IN $\ge_3$ L FINAL STATES

[CMS-TOP-21-001]

- Full Run II Luminosity 138/fb
- Main processes: tZq/ttZ/tWZ
  - Leptonically decaying top + Z boson candidate
- 5 operators: weak dipole moment interactions, left- and right-handed top quark vector couplings
- Main sensitivity: from SR-3l
- Extensive use of MVAs
  - Multiclassifier "NN-SM" in SR-3l to discriminate between several SM processes : tZq / ttZ / (bkg.)
    - 33 (mostly kinematic) event properties
  - 8 neural network binary classifiers to separate SM-events from BSM events



# MVA topologies

# MVA-EFT SEARCH IN ≥3L FINAL STATES

- Plots: Split according to max. value in the output node
  - Very good control of in SR-3l
- 5 MVAs for single-op inference
- Train separate SM vs. EFT MVAs
  - Trainings for tZq and ttZ
  - Single operator  $O_{tZ}$ ,  $O_{tW}$ ,  $O_{3\phi Q}$ 
    - Use for 1D limits
  - NN-5D training with all operators
  - Total of 8 MVAs for SM vs. EFT
- signal extraction with 1D, 2D, and 5D likelihood fit
- Systematics:
  - theory uncertainty and NP lepton systematics dominate





#### MVA-EFT SEARCH IN ≥3L FINAL STATES



- Better limits than eariler results from the ttZ cross section measurement
- Agreement within 2σ in general

[CMS-TOP-21-001]

[CMS-TOP-18-009]

#### MVA-EFT SEARCH IN ≥3L FINAL STATES







 $p_{(\gamma)}$  [GeV]

# TOP QUARK PAIRS WITH A PHOTON

- First CMS tty differential cross section measurement in th 1l channel
  - $N_b \ge 1$ ,  $N_j = 3$ ,  $N_j \ge 4$ , Binned in lepton flavor
- Full Run II luminosity 137 fb<sup>-1</sup>
- Details of the 112 CR: [<u>D. Walter: top EWK couplings</u>]
- Interpretation in c<sub>tZ</sub> (weak dipole moment)
- SM gauge symmetry → linear relations among anomalous interactions



p\_(γ) [GeV]



# TT+Y DIFFERENTIAL CROSS SECTION

[CMS-TOP-18-010]

- Top dipole moments effect tty stronger than ttZ (provided c<sub>tw</sub> is small)
- Best current limits
- Measure real and imaginary part

| Wilson coefficient |          |                                  | 68% CL interval $(\Lambda / \text{TeV})^2$ | 95% CL interval $(\Lambda / \text{TeV})^2$ |  |  |
|--------------------|----------|----------------------------------|--------------------------------------------|--------------------------------------------|--|--|
| ed                 | $c_{tZ}$ | $c_{\mathrm{tZ}}^{\mathrm{I}}=0$ | [-0.19, 0.21]                              | [-0.29, 0.32]                              |  |  |
| pect               |          | profiled                         | [-0.19, 0.21]                              | [-0.29, 0.32]                              |  |  |
| EX                 |          | $c_{\mathrm{tZ}}=0$              | [-0.20, 0.20]                              | [-0.30, 0.31]                              |  |  |
|                    |          | profiled                         | [-0.20, 0.20]                              | [-0.30, 0.31]                              |  |  |
| be                 | $c_{tZ}$ | $c_{\mathrm{tZ}}^{\mathrm{I}}=0$ | [-0.35, -0.16]                             | [-0.42, 0.38]                              |  |  |
| serve              |          | profiled                         | [-0.35, 0.07]                              | [-0.42, 0.39]                              |  |  |
| 0p                 |          | $c_{\mathrm{tZ}}=0$              | [-0.35, -0.16], [0.17, 0.35]               | [-0.42, 0.42]                              |  |  |
|                    |          | profiled                         | [-0.32, 0.31]                              | [-0.41, 0.41]                              |  |  |



#### SUMMARY

- Top quark final states have the power to constrain many SM-EFT effects, never tested before
- SM-EFT has become the leading theoretical toolkit for interpreting anomalous signals in precision experiments
- The sound theoretical footing allows for a globally consistent interpretation, with the prospect of benefitting from closely related fields





#### BACKUP



| Operators involving two quarks and one or more bosons |                                                                                                                            |                                                                 |                                                                      |  |  |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|
| Operator                                              | Definition                                                                                                                 | WC                                                              | Lead processes affected                                              |  |  |  |  |  |
| $O_{u\varphi}^{(ij)}$                                 | $\overline{\mathbf{q}}_{i}\mathbf{u}_{j}\widetilde{\varphi}(\varphi^{\dagger}\varphi)$                                     | $c_{\mathrm{t}arphi}+ic_{\mathrm{t}arphi}^{I}$                  | tīH, tHq                                                             |  |  |  |  |  |
| $O_{arphi \mathrm{q}}^{1(ij)}$                        | $(\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\overline{\mathbf{q}}_{i} \gamma^{\mu} \mathbf{q}_{j})$           | $c_{\varphi Q}^- + c_{\varphi Q}^3$                             | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$         |  |  |  |  |  |
| $O_{arphi \mathrm{q}}^{\mathrm{3}(ij)}$               | $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{\mathrm{q}}_{i}\gamma^{\mu}\tau^{I}\mathrm{q}_{j})$ | $c_{\varphi Q}^3$                                               | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$         |  |  |  |  |  |
| $O^{(ij)}_{arphi \mathrm{u}}$                         | $(\varphi^{\dagger}i\overrightarrow{D}_{\mu}\varphi)(\overline{\mathbf{u}}_{i}\gamma^{\mu}\mathbf{u}_{j})$                 | C <sub>\varphit</sub>                                           | t $\bar{t}H$ , t $\bar{t}l\nu$ , t $\bar{t}l\bar{l}$ , tl $\bar{l}q$ |  |  |  |  |  |
| $O_{\varphi ud}^{(ij)}$                               | $(	ilde{arphi}^{\dagger}iD_{\mu}arphi)(\overline{\mathrm{u}}_{i}\gamma^{\mu}\mathrm{d}_{j})$                               | $c_{arphi 	ext{tb}} + i c_{arphi 	ext{tb}}^{I}$                 | tīH, tllq, tHq                                                       |  |  |  |  |  |
| $O_{uW}^{(ij)}$                                       | $(\overline{\mathrm{q}}_{i}\sigma^{\mu u}	au^{I}\mathrm{u}_{j})	ilde{arphi}\mathrm{W}^{I}_{\mu u}$                         | $c_{\rm tW} + i c_{\rm tW}^I$                                   | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$         |  |  |  |  |  |
| $O_{\rm dW}^{(ij)}$                                   | $(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \tau^I \mathbf{d}_j) \varphi \mathbf{W}^I_{\mu\nu}$                              | $c_{bW} + i c_{bW}^I$                                           | tīH, tīllī, tHq, tllīq                                               |  |  |  |  |  |
| $O_{uB}^{(ij)}$                                       | $(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \mathbf{u}_j)  \tilde{\varphi} \mathbf{B}_{\mu\nu}$                              | $(c_{\rm W}c_{\rm tW} - c_{\rm tZ})/s_{\rm W} +$                | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$         |  |  |  |  |  |
|                                                       |                                                                                                                            | $i(c_{\rm W}c_{\rm tW}^I - c_{\rm tZ}^I)/s_{\rm W}$             |                                                                      |  |  |  |  |  |
| $O_{uG}^{(ij)}$                                       | $(\overline{\mathbf{q}}_i \sigma^{\mu  u} T^A \mathbf{u}_j)  	ilde{arphi} G^A_{\mu  u}$                                    | $\mathbf{g}_{\mathbf{s}}(c_{\mathbf{t}G}+ic_{\mathbf{t}G}^{I})$ | $t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$         |  |  |  |  |  |

| Operators | involving    | two c | juarks and     | two l | eptons |
|-----------|--------------|-------|----------------|-------|--------|
| operators | III OI VIIIE | ,     | 1 uui Ko ui ko |       | cptono |

| Operator                                 | Definition                                                                                                                   | WC                                                       | Lead processes affected                            |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| $O^{1(ijkl)}_{\ell q}$                   | $(\overline{\ell}_i\gamma^\mu\ell_j)(\overline{\mathrm{q}}_k\gamma^\mu\mathrm{q}_\ell)$                                      | $c_{Q\ell}^{-(\ell)}+c_{Q\ell}^{3(\ell)}$                | $t\bar{t}l\nu$ , $t\bar{t}l\bar{l}$ , $tl\bar{l}q$ |
| $O_{\ell q}^{3(ijkl)}$                   | $(\overline{\ell}_i\gamma^\mu	au^I\ell_j)(\overline{\mathrm{q}}_k\gamma^\mu	au^I\mathrm{q}_\ell)$                            | $c_{Q\ell}^{3(\ell)}$                                    | $t\bar{t}l\nu$ , $t\bar{t}l\bar{l}$ , $tl\bar{l}q$ |
| $O_{\ell \mathrm{u}}^{(i j k l)}$        | $(\overline{\ell}_i\gamma^\mu\ell_j)(\overline{\mathrm{u}}_k\gamma^\mu\mathrm{u}_\ell)$                                      | $c_{\mathrm{t}\ell}^{(\ell)}$                            | tīll                                               |
| $O_{ m e \overline{q}}^{(ijkl)}$         | $(\overline{\mathrm{e}}_{i}\gamma^{\mu}\mathrm{e}_{j})(\overline{\mathrm{q}}_{k}\gamma^{\mu}\mathrm{q}_{\ell})$              | $c_{Q{ m e}}^{(\ell)}$                                   | tītlī, tllq                                        |
| $O_{ m eu}^{(iar{j}kl)}$                 | $(\overline{\mathrm{e}}_{i}\gamma^{\mu}\mathrm{e}_{j})(\overline{\mathrm{u}}_{k}\gamma^{\mu}\mathrm{u}_{\ell})$              | $c_{ m te}^{(\ell)}$                                     | tīll                                               |
| ${}^{\ddagger}O^{1(ijkl)}_{\ell equ}$    | $(\overline{\ell}_i \mathbf{e}_j)  \varepsilon  (\overline{\mathbf{q}}_k \mathbf{u}_\ell)$                                   | $c_{\mathrm{t}}^{S(\ell)} + i c_{\mathrm{t}}^{SI(\ell)}$ | tītlī, tllq                                        |
| ${}^{\ddagger}O^{3(ijkl)}_{\ell  m equ}$ | $(\overline{\ell}_i \sigma^{\mu\nu} \mathbf{e}_j) \ \varepsilon \ (\overline{\mathbf{q}}_k \sigma_{\mu\nu} \mathbf{u}_\ell)$ | $c_{\mathrm{t}}^{T(\ell)} + i c_{\mathrm{t}}^{TI(\ell)}$ | $t\bar{t}l\nu$ , $t\bar{t}l\bar{l}$ , $tl\bar{l}q$ |

#### EFT SEARCH IN MULTILEPTON FINAL STATES



| Variable                                        | NN-SM        | NN- $c_{tZ}$ -tZq | NN- $c_{tZ}$ -t $\bar{t}Z$ | NN-c <sub>tW</sub> -tZq | NN- $c_{tW}$ - $t\bar{t}Z$ | NN- $c_{\varphi Q}^3$ -tZq | NN- $c_{\varphi Q}^3$ -t $\bar{t}Z$ | NN-5D-tZq    | NN-5D-t $\bar{t}Z$ |
|-------------------------------------------------|--------------|-------------------|----------------------------|-------------------------|----------------------------|----------------------------|-------------------------------------|--------------|--------------------|
| $p_{\mathrm{T}}^{Z}$                            | _            | ✓                 | $\checkmark$               | ✓                       | √                          | ✓                          | 1                                   | ✓            | $\checkmark$       |
| $\eta(Z)$                                       | $\checkmark$ | $\checkmark$      | $\checkmark$               | _                       | _                          | $\checkmark$               | _                                   | _            | $\checkmark$       |
| $\Delta \phi(\ell_1^Z \ell_2^Z)$                | $\checkmark$ | $\checkmark$      | $\checkmark$               | $\checkmark$            | $\checkmark$               | $\checkmark$               | $\checkmark$                        | $\checkmark$ | $\checkmark$       |
| $p_{\rm T}({\rm t})$                            | $\checkmark$ | $\checkmark$      | $\checkmark$               | _                       | $\checkmark$               | $\checkmark$               | —                                   | $\checkmark$ | $\checkmark$       |
| $\eta(t)$                                       | —            | $\checkmark$      | $\checkmark$               | $\checkmark$            | $\checkmark$               | $\checkmark$               | —                                   | —            | $\checkmark$       |
| m(t,Z)                                          | —            | _                 | _                          | _                       | _                          | _                          | _                                   | —            | —                  |
| $ \eta(j') $                                    | $\checkmark$ | —                 | _                          | _                       | _                          | —                          | -                                   | $\checkmark$ | —                  |
| $p_{\mathrm{T}}(j')$                            | $\checkmark$ | $\checkmark$      | _                          | $\checkmark$            | —                          | —                          | —                                   | —            | —                  |
| $\Delta R(b, \ell_{\rm t})$                     | —            | $\checkmark$      | _                          | $\checkmark$            | _                          | —                          | —                                   | —            | —                  |
| $\Delta R(j', \ell_t)$                          | $\checkmark$ | _                 | _                          | _                       | _                          | -                          | —                                   | —            | —                  |
| $\Delta R(t, Z)$                                | —            | $\checkmark$      | $\checkmark$               | $\checkmark$            | _                          | $\checkmark$               | —                                   | —            | $\checkmark$       |
| $\Delta \eta(\mathbf{Z}, j')$                   | —            | $\checkmark$      | _                          | _                       | _                          | —                          | —                                   | $\checkmark$ | —                  |
| $\Delta R$ between t and the closest lepton     | —            | $\checkmark$      | _                          | $\checkmark$            | -                          | —                          | -                                   | —            | —                  |
| $\Delta R$ between $j'$ and the closest lepton  | —            | _                 | _                          | -                       | -                          | —                          | -                                   | $\checkmark$ | _                  |
| $m_{3\ell}$                                     | $\checkmark$ | —                 | _                          | _                       | $\checkmark$               | —                          | $\checkmark$                        | —            | $\checkmark$       |
| $m_{\rm T}^{\rm W}$                             | $\checkmark$ | $\checkmark$      | $\checkmark$               | _                       | _                          | —                          | —                                   | —            | $\checkmark$       |
| $p_{\rm T}^{\rm miss}$                          | $\checkmark$ | _                 | _                          | _                       | _                          | —                          | —                                   | —            | —                  |
| Lepton asymmetry                                | $\checkmark$ | _                 | _                          | $\checkmark$            | $\checkmark$               | —                          | —                                   | $\checkmark$ | —                  |
| $\cos \theta_{\rm Z}^{\star}$                   | -            | _                 | $\checkmark$               | _                       | _                          | $\checkmark$               | —                                   | —            | $\checkmark$       |
| Max. $p_{\rm T}$ among jet pairs                | —            | _                 | _                          | _                       | -                          | —                          | $\checkmark$                        | —            | $\checkmark$       |
| Max. DEEPJET discriminant                       | $\checkmark$ | _                 | _                          | _                       | -                          | —                          | —                                   | —            | —                  |
| b jet multiplicity                              | $\checkmark$ | -                 | _                          | _                       | -                          | —                          | —                                   | —            | —                  |
| Three-momenta of the three leading leptons      | $\checkmark$ | _                 | _                          | _                       | _                          | _                          | _                                   | _            | _                  |
| Three-momenta of the three leading jets         | $\checkmark$ | _                 | _                          | _                       | _                          | _                          | —                                   | _            | _                  |
| DEEPJET discriminants of the three leading jets | $\checkmark$ | _                 | _                          | _                       | -                          | -                          | -                                   | —            | —                  |
| Number of variables                             | 33           | 11                | 8                          | 8                       | 6                          | 7                          | 4                                   | 7            | 10 16              |



| Source                              | $c_{tZ}$ | $c_{\mathrm{tW}}$ | $c_{\varphi Q}^3$ | $c_{\varphi Q}^{-}$ | $c_{\phi t}$ |
|-------------------------------------|----------|-------------------|-------------------|---------------------|--------------|
| tZq normalization                   | < 0.1    | < 0.1             | 1.2               | 0.1                 | 0.8          |
| t <sub>t</sub> Z normalization      | 0.6      | < 0.1             | 0.4               | 37.2                | 38           |
| tWZ normalization                   | 0.1      | 0.1               | < 0.1             | 0.7                 | 2.1          |
| Background normalizations           | < 0.1    | < 0.1             | 6.9               | 3.6                 | 6.8          |
| NPL background estimation           | 1.4      | 0.2               | 5.6               | 0.3                 | 3.8          |
| Jet energy scale                    | < 0.1    | < 0.1             | 0.8               | 0.7                 | 2.3          |
| Jet energy resolution               | < 0.1    | < 0.1             | < 0.1             | < 0.1               | 1.4          |
| $p_{\mathrm{T}}^{\mathrm{miss}}$    | < 0.1    | < 0.1             | < 0.1             | < 0.1               | 0.2          |
| b tagging                           | < 0.1    | < 0.1             | 0.9               | 2.0                 | 0.3          |
| Other (experimental)                | < 0.1    | < 0.1             | 1.6               | 0.8                 | 0.6          |
| Lepton identification and isolation | 0.4      | 0.4               | 1.2               | 2.2                 | 0.8          |
| Theory                              | 2.1      | 1.1               | 0.4               | 0.9                 | 0.9          |

# **ELECTROWEAK TOP QUARK COUPLINGS**







- EFT tensor structure induces EWK dipole moments (quadratic)
- most stringent direct constraints on

the top-Z vector coupling and the EWK dipole moments

differential measurement improves sensitivity by factor ~5 •





- Indirect limits: LEP Z pole,  $B \rightarrow X_s \gamma$ •
- Z and  $\gamma$  coupling related by gauge symmetry

#### Phys. Rev. D 100, 072002 (2019)

EPIC 80(2020)754



#### CHROMOMAGNETIC DIPOLE MOMENT



• Constrain the top chromo-magnetic & electric dipole moment

$$\mathcal{O}_{tG} = i (\bar{q}_L \sigma^{\mu\nu} \lambda^a t_R) \tilde{\phi} G^a_{\mu\nu} + h.c.$$

- 2HDM, SUSY, technicolor, compositeness  $C_{tG}/\Lambda^2 = \mu_t/(2m_t^2)$
- currently best limit:  $-0.10 < C_{tG}/\Lambda^2 < 0.22 \text{ TeV}^{-2}$



# **CONSTRAINING SM-EFT WITH TTBAR**

• using the dilepton channel, directly constrain EFT with tW and tt final states

Single Top (tW) tt Single Top (tW) + tt split in e/**µ** lepton flavor

- tt ≥ 2 jets (≥ 2 b jets)
- tW: 1-2 jets (0-1 b jet).
- test separately 6 Wilson coeff:
  - Wtb vertex, top-gluon coupling, 3g vertex, FCNC couplings
- Signal extraction via per-channel neural networks
- first attempt of a global analysis at CMS



95%CL

new

Eur. Phys. J. C 79 (2019) 886



[CMS-TOP-19-001]