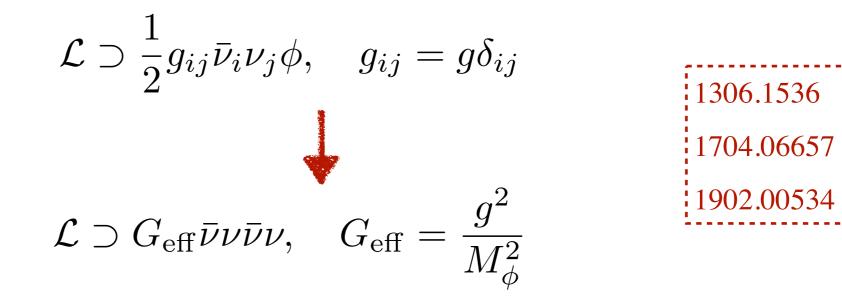
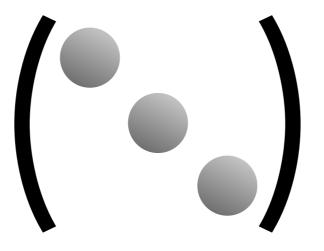
Neutrino Self-interaction as a solution(?) to the Hubble Tension

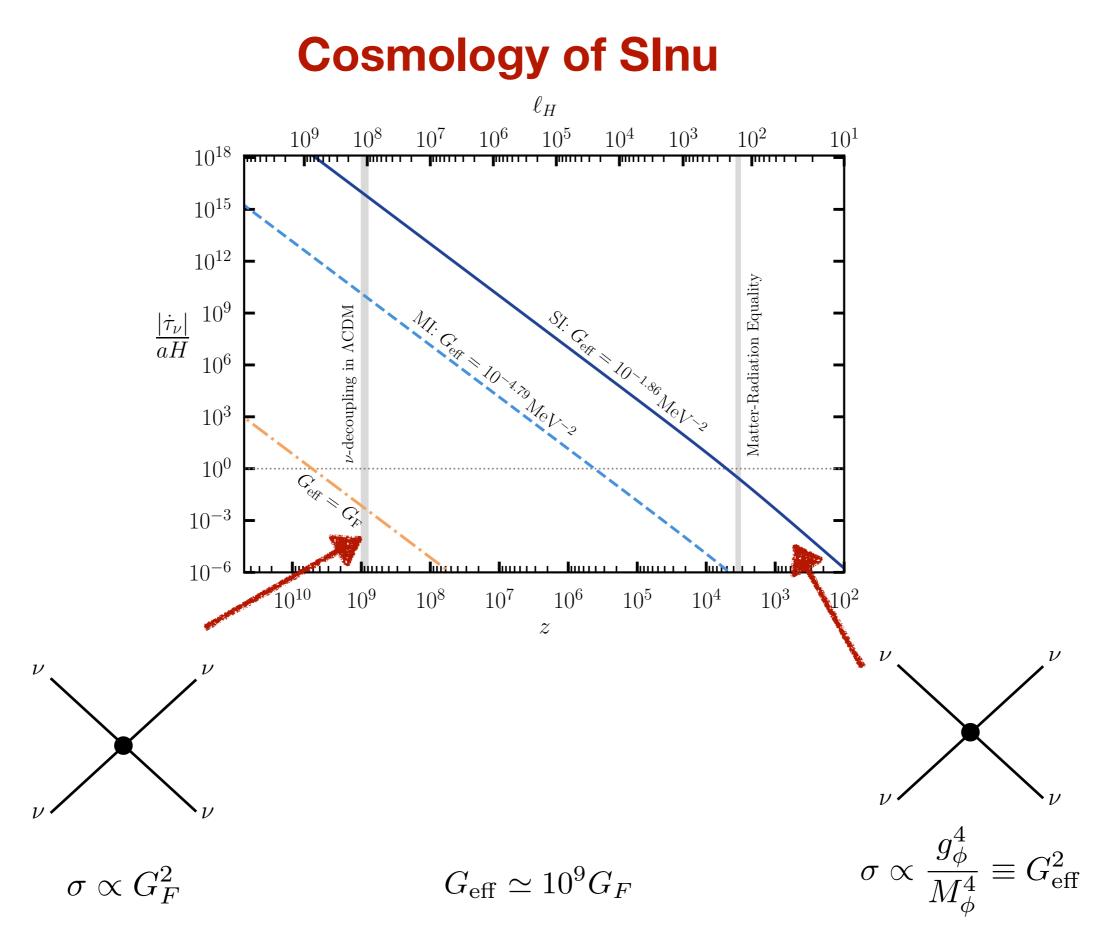
Anirban Das

SLAC National Accelerator Laboratory

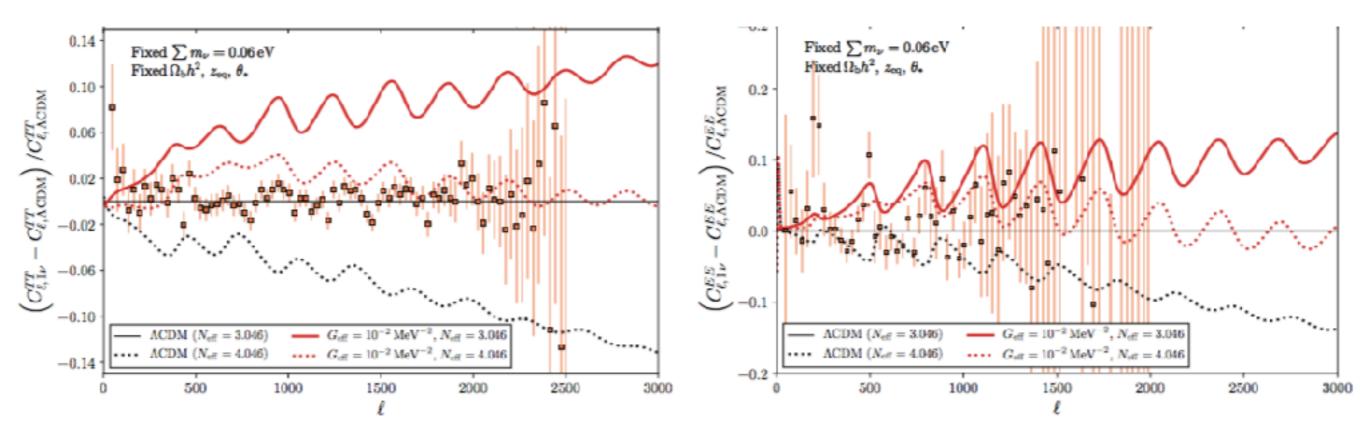
Based on 2011.12315 with Subhajit Ghosh

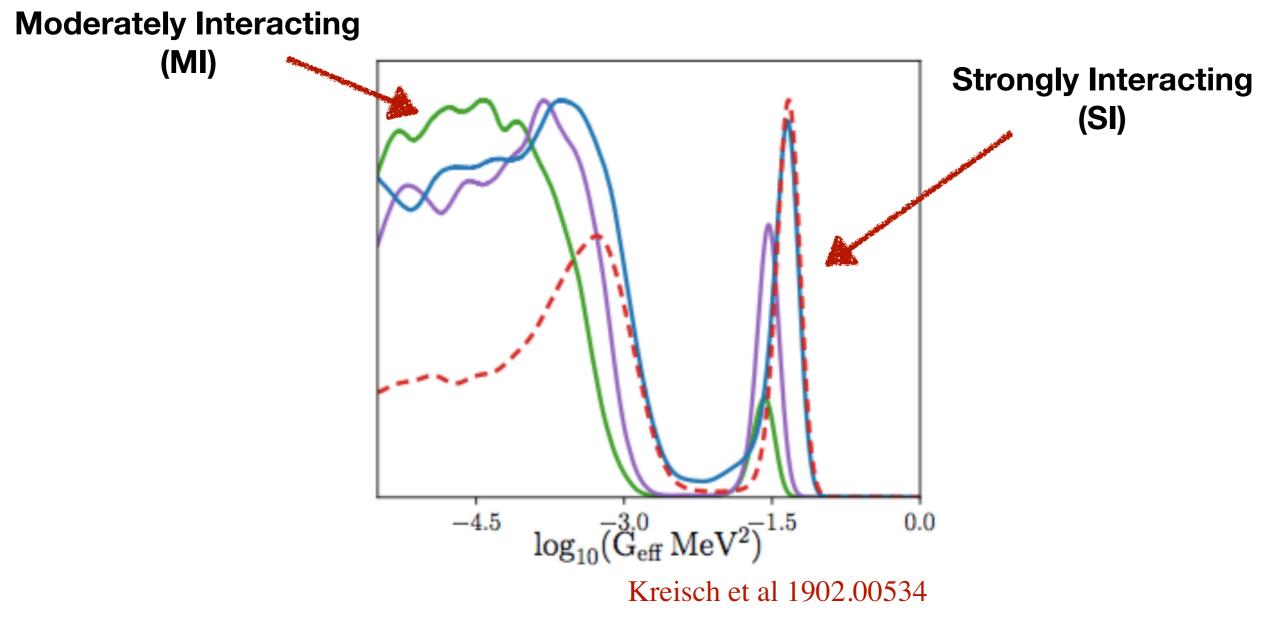



Outline


- Cosmology of self-interacting neutrino
- Flavor-universal SInu & the Hubble tension
- Laboratory constraints on SInu
- Flavor-specific Slnu

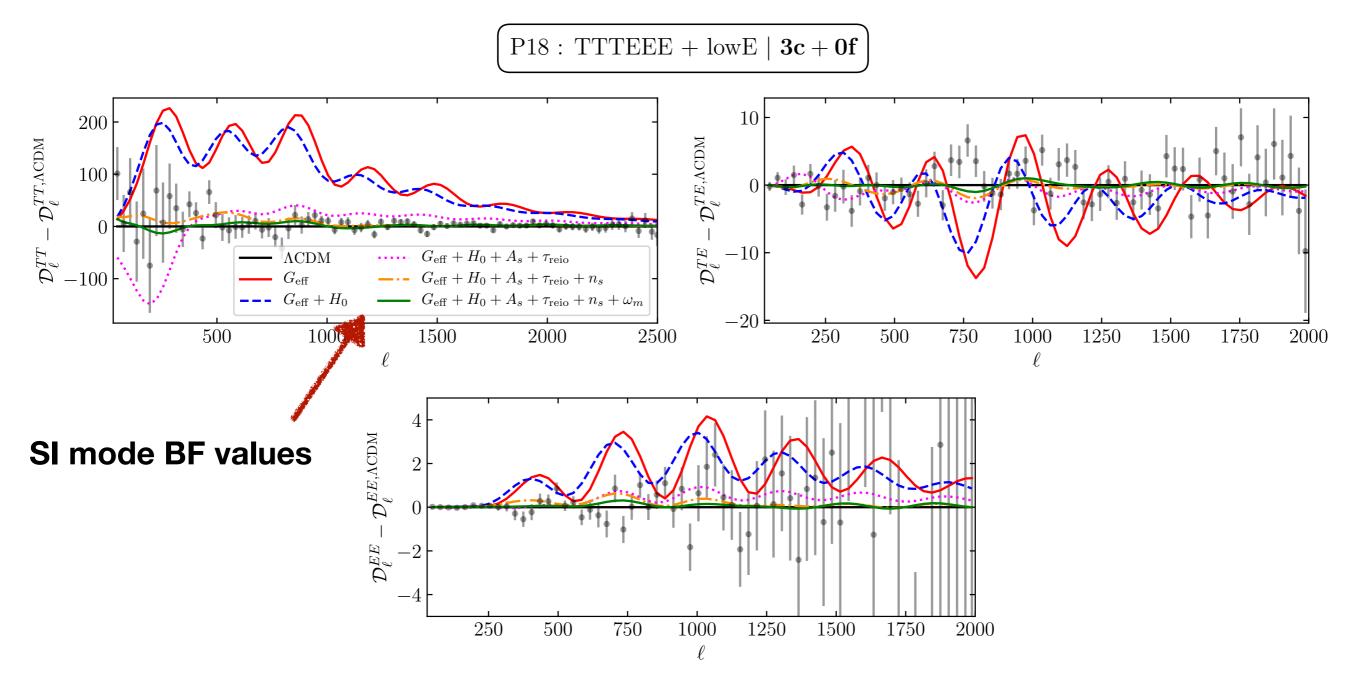
A phenomenological model


All neutrino flavors interact with the same strength


CMB Power Spectra

Gravitational potentials enhance photon perturbation \implies larger C_l

Kreisch et al 1902.00534


Cosmology of Slnu

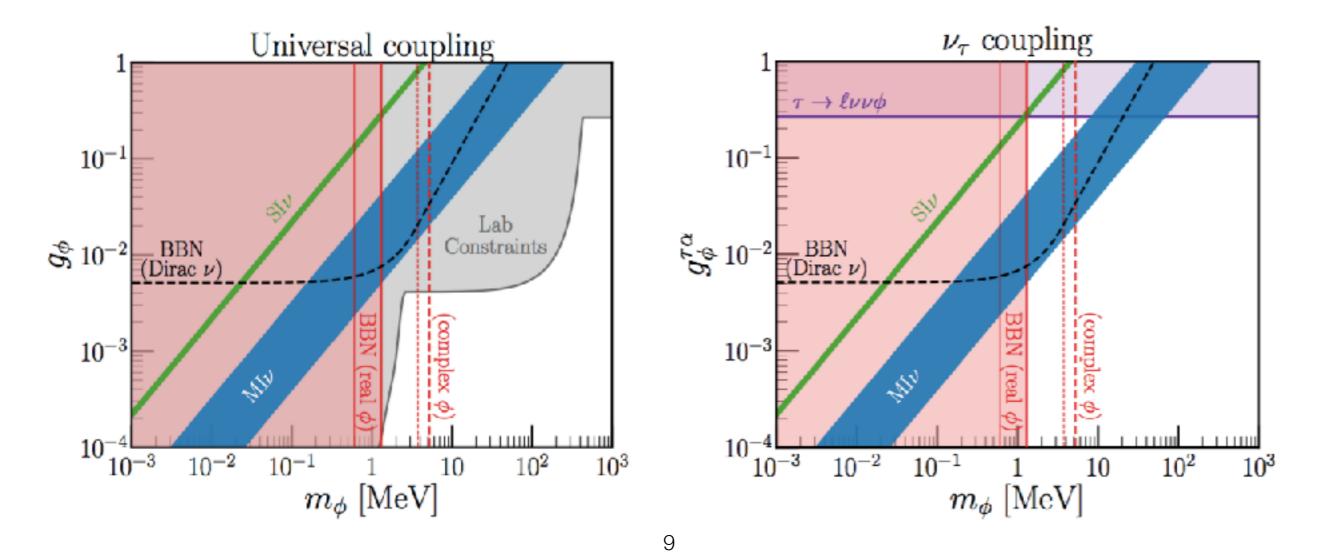
Questions:

- Origin of the SI mode?
- Why is there a valley in between?

Cosmology of SInu: *G_{eff}* **degeneracy w/ other params**

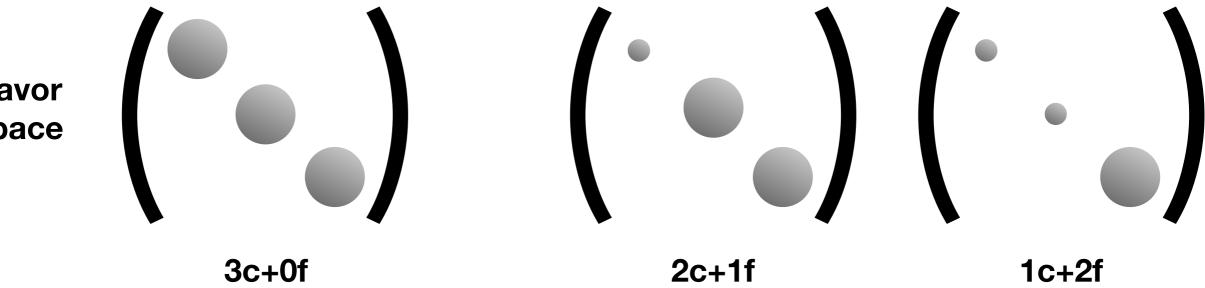
SI mode coupling affects *l* > 200

SInu & Hubble $\phi_{\nu} \simeq 0.19 \pi R_{\nu}$ Free-streaming neutrino Phase shift $\ell \approx (m\pi - \phi_{\nu}) \frac{D_A^*}{r_a^*}$ 6000 $N_{\rm eff} = 3.046$ $\mathrm{SI}\nu, G_{\mathrm{eff}} = 10^{-2} \,\mathrm{MeV}$ $N_{\rm off} = 4.061$ 5000 Sinu phase shift increases ℓ $\begin{array}{c} \ell(\ell+1)/2\pi \, C_{\ell}^{TT} \, \left[\mu \mathrm{K}^2 \right] \\ 0000 & 0000 \\ 0000 & 0000 \end{array}$ 1000 To keep the spectrum fixed, $\theta_* = \frac{r_s^*}{D_A^*}$ needs to increase 500 1500 1000 2000 2500

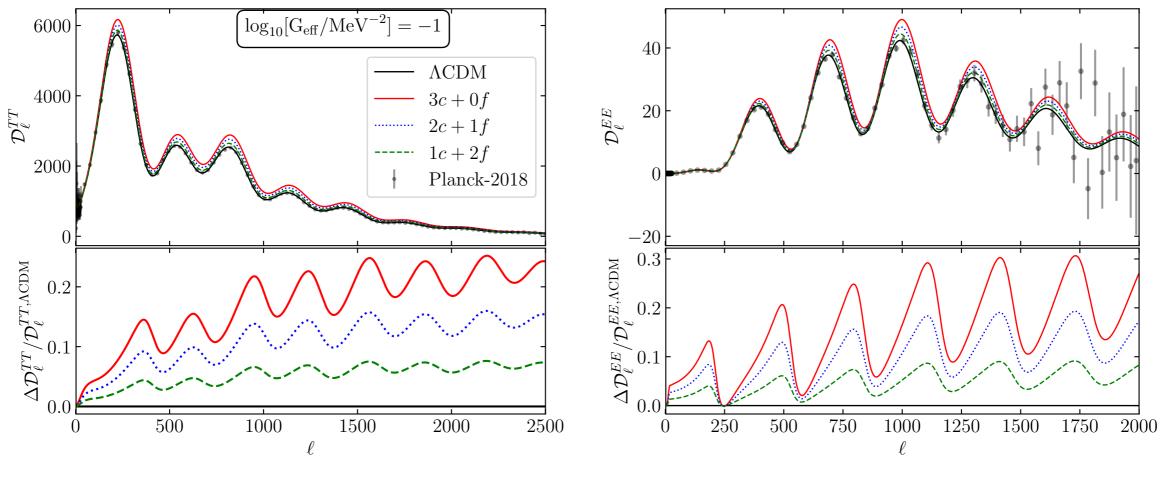

Larger H_0 decreases D_A^* increases θ_*

$$D_A^* = \int_0^{z^*} \frac{1}{H(z)} dz, \qquad r_s^* = \int_{z^*}^{\infty} \frac{c_s(z)}{H(z)} dz$$

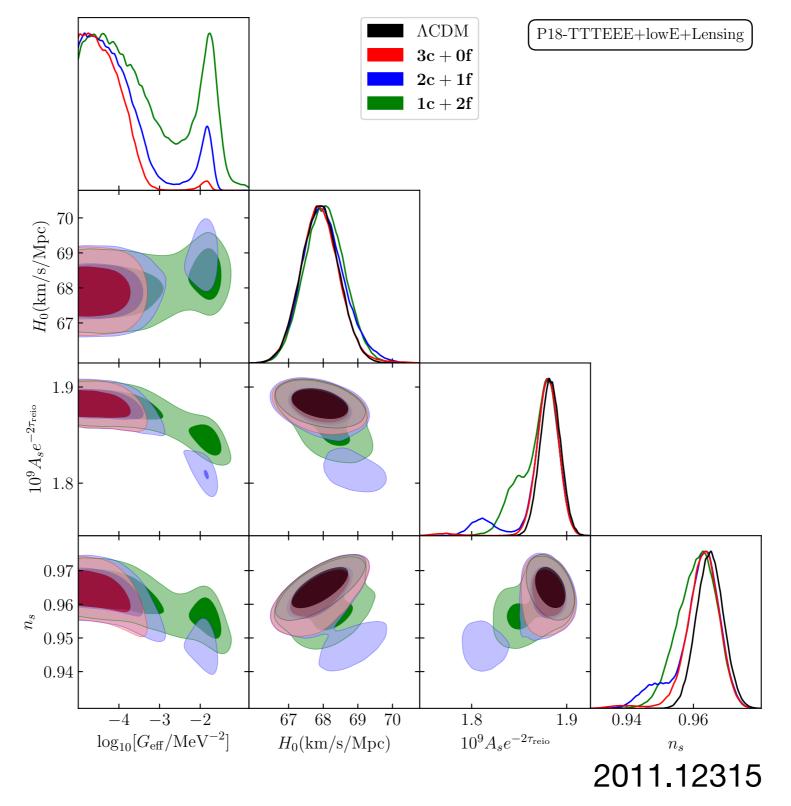
Laboratory Constraints


Example: nu self-interaction could come from a scalar (1905.02727)

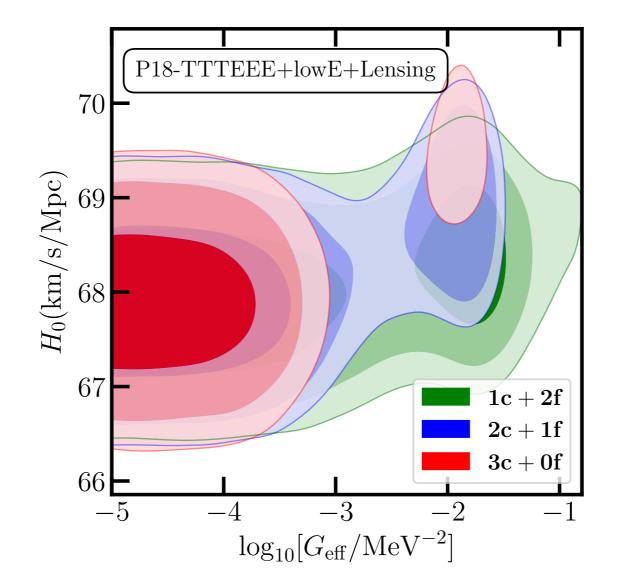
$$egin{split} \mathcal{L} \supset -rac{1}{2}m_{\phi}^2 \phi^2 + rac{1}{2}(g_{\phi}^{lphaeta}
u_{lpha}
u_{eta}\phi + ext{h.c.}) \ & \ G_{ ext{eff}} \equiv rac{g_{\phi}^2}{m_{\phi}^2} = (10 \ ext{MeV})^{-2}\left(rac{g_{\phi}}{10^{-1}}
ight)^2\left(rac{ ext{MeV}}{m_{\phi}}
ight)^2 \end{split}$$



$$\mathcal{L} \supset G_{ ext{eff}}^{(ijkl)} \bar{
u}_i
u_j \bar{
u}_k
u_l, \qquad G_{ ext{eff}}^{(ijkl)} \equiv rac{g_{ij}g_{kl}}{M_{\phi}^2}$$


Flavor-specific Slnu

2011.12315


Less number of interacting neutrinos reduces the change in the CMB power spectra

Flavor-specific Slnu

Flavor-specific Slnu: effect on *H*₀

Geff has positive correlation with H₀

 $H_0 = 69.5 \pm 0.6 \text{ km/s/Mpc}$ for TTTEEE+lowE+lens (2011.12315)

 $H_0 = 69.6 \pm 2.5$ (TRGB, 2002.01550)

 $H_0 = 73.2 \pm 1.3$ (Riess et al, 2012.08534)

Conclusions & Future Outlook

- Neutrino self-interaction is phenomenologically motivated
- Flavor-universal large Geff (~10⁻² MeV⁻²) is incompatible with BBN & laboratory data. However, flavor-specific interaction may still be allowed.
- Changes in CMB spectrum is less with less #interacting nu, hence, more room to exploit the deg. with A_s , n_s , τ_{reio} , $H_0 \implies$ enhances the SI mode
- The SI mode bestfit coupling in the flavor-specific case remains almost the same
- More work needed with massive neutrinos and off-diagonal couplings

Parameter values

Parameters	TT+lowE		TTTEEE+lowE	
	SI	MI	SI	MI
$\Omega_{ m b}h^2$	0.022 ± 0.00027	0.022 ± 0.00021	0.022 ± 0.00016	0.022 ± 0.00015
$\Omega_{ m c}h^2$	0.1211 ± 0.0023	0.1203 ± 0.002	0.1205 ± 0.0014	0.1201 ± 0.0013
$100\theta_s$	1.0452 ± 0.00059	1.0419 ± 0.0005	1.045 ± 0.00076	$1.0419 {\pm} 0.00031$
$\ln(10^{10}A_s)$	2.99 ± 0.0179	3.036 ± 0.01714	3 ± 0.0167	3.042 ± 0.0161
n_s	0.9407 ± 0.0079	0.9596 ± 0.0068	0.9473 ± 0.0046	0.9628 ± 0.005
$ au_{ m reio}$	0.0501 ± 0.008	0.0516 ± 0.0079	0.0538 ± 0.0077	0.0538 ± 0.0077
$\log_{10}(G_{\rm eff}/{\rm MeV^{-2}})$	-1.69 ± 0.2	-4.03 ± 0.6	-1.93 ± 0.24	-4.24 ± 0.5
$H_0({\rm kms^{-1}Mpc^{-1}})$	68.34 ± 1.00	67.57 ± 0.92	68.81 ± 0.63	67.83 ± 0.6
σ_8	0.823 ± 0.01	0.824 ± 0.009	0.829 ± 0.0079	0.824 ± 0.0075

Table 4: Parameter values and 68% confidence limits in 2c + 1f.

Table 5: Parameter values and 68% confidence limits in 1c + 2f.

Parameters	TT+lowE		TTTEEE+lowE	
	SI	MI	SI	MI
$\Omega_{ m b}h^2$	0.022 ± 0.00023	0.022 ± 0.00021	0.022 ± 0.00015	0.022 ± 0.00015
$\Omega_{ m c}h^2$	0.1207 ± 0.0021	0.1203 ± 0.002	0.1203 ± 0.0014	0.1201 ± 0.0013
$100\theta_s$	$1.0434 {\pm} 0.00062$	1.0419 ± 0.0004	1.043 ± 0.00058	1.0419 ± 0.0003
$\ln(10^{10}A_s)$	3.01 ± 0.0179	3.037 ± 0.01664	3.024 ± 0.0166	3.042 ± 0.016
n_s	0.9513 ± 0.0069	0.9609 ± 0.0059	0.9553 ± 0.0049	0.963 ± 0.005
$ au_{ m reio}$	0.051 ± 0.008	0.0519 ± 0.008	0.0539 ± 0.0076	0.0539 ± 0.0077
$\log_{10}(G_{\rm eff}/{\rm MeV^{-2}})$	-1.75 ± 0.4	-3.94 ± 0.6	-1.9 ± 0.37	-4.06 ± 0.6
$H_0({\rm kms^{-1}Mpc^{-1}})$	67.9 ± 1.00	67.56 ± 0.93	68.3 ± 0.62	67.83 ± 0.61
σ_8	0.821 ± 0.01	0.823 ± 0.009	0.825 ± 0.0083	0.824 ± 0.0075

2011.12315

Parameter values

Parameters	TTTEEE+lowE+lens		TTTEEE+lowE+lens+BAO+ H_0	
	SI	MI	SI	MI
$\Omega_{ m b}h^2$	0.022 ± 0.0001	0.022 ± 0.00014	0.022 ± 0.0001	0.022 ± 0.00013
$\Omega_{ m c}h^2$	0.1202 ± 0.0013	0.1199 ± 0.0012	0.12 ± 0.001	0.1188 ± 0.0009
$100\theta_s$	1.045 ± 0.0008	1.0419 ± 0.0003	1.045 ± 0.00068	1.042 ± 0.00029
$\ln(10^{10}A_s)$	3 ± 0.0158	3.041 ± 0.014	3 ± 0.0151	3.044 ± 0.0145
n_s	0.9476 ± 0.0043	0.9629 ± 0.0048	0.9483 ± 0.004	0.966 ± 0.0046
$ au_{ m reio}$	0.0541 ± 0.0074	0.0536 ± 0.0072	0.0544 ± 0.007	0.0565 ± 0.0071
$\log_{10}(G_{\rm eff}/{\rm MeV^{-2}})$	-1.96 ± 0.26	-4.22 ± 0.51	-1.91 ± 0.22	-4.22 ± 0.52
$H_0 ({\rm kms^{-1}Mpc^{-1}})$	68.87 ± 0.58	67.9 ± 0.53	69.08 ± 0.42	68.47 ± 0.4
σ_8	0.829 ± 0.007	0.823 ± 0.006	0.827 ± 0.0065	0.821 ± 0.0059

Table 11: Parameter values and 68% confidence limits in 2c + 1f.

Table 12: Parameter values and 68% confidence limits in 1c + 2f.

Parameters	TTTEEE+lowE+lens		TTTEEE+lowE+lens+BAO+ H_0	
	SI	MI	SI	MI
$\Omega_{ m b}h^2$	0.022 ± 0.0001	0.022 ± 0.00014	0.022 ± 0.0001	0.022 ± 0.00013
$\Omega_{ m c}h^2$	0.1201 ± 0.0012	0.1199 ± 0.0012	0.12 ± 0.0009	0.1188 ± 0.0009
$100\theta_s$	1.043 ± 0.0006	1.0419 ± 0.0003	1.043 ± 0.00056	1.042 ± 0.00029
$\ln(10^{10}A_s)$	3.023 ± 0.0153	3.041 ± 0.015	3 ± 0.0151	3.045 ± 0.0142
n_s	0.9555 ± 0.0046	0.9633 ± 0.0045	0.9572 ± 0.004	0.966 ± 0.0042
$ au_{ m reio}$	0.0536 ± 0.0073	0.0536 ± 0.0074	0.0554 ± 0.007	0.0566 ± 0.0071
$\log_{10}(G_{\rm eff}/{\rm MeV^{-2}})$	-1.91 ± 0.37	-4.04 ± 0.61	-1.86 ± 0.36	-4.03 ± 0.61
$H_0({\rm km s^{-1} Mpc^{-1}})$	68.35 ± 0.56	67.9 ± 0.54	68.75 ± 0.41	68.48 ± 0.41
σ_8	0.824 ± 0.007	0.823 ± 0.006	0.822 ± 0.0071	0.821 ± 0.006

2011.12315