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Misalignment mechanism

PQ breaking during inflation ⇒ almost

homogeneous θ in observable universe.

The fluctuations of the axion field are usually

neglected; θ(t, x)→ θ(t)

θ̈ + 3H θ̇ + m2(T ) sin(θ) ≈ 0

The field is Hubble frozen at the initial angle

θi , starts oscillating around m ≈ 3H, then

redshifts as θ ∝ a−3/2.

Relic density is determined by the initial angle

θi and the oscillation temperature Tosc.

φ

V (φ)

Λ4
b

φi = θi f , φ̇i ≈ 0

θ̇ ≈ 0, H � mφ

θ ∝ a−3/2, H � mφ

m(Tosc) ≈ 3H(Tosc)
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The Large Misalignment mechanism

The fluctuations become important if the initial

angle is tuned to the hill top, θi − π � 1

hep-ph/9808477, 1909.11665

This delays the onset of oscillations, so the

amplitude of the oscillations decay at a much

slower rate.

This allows the axion to probe the non-quadratic

parts of the potential yielding to parametric

resonance.

There are also mechanisms which can make this

apparent tuning natural. 1812.11192
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Axion fragmentation

In the axion has a large initial kinetic energy,

then it travels many barriers before it stops.

This can arise from

• Axion receives a kick from explicit PQ breaking

in the UV 1910.14152, 2004.00629, 2006.05687

• Trapped misalignment 2102.00012, 2102.01082

During the rolling, modes inside the instability

band experiences exponential growth.

1911.08472, 1911.08473
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Axion fragmentation in a nutshell
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particle production.
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The dynamics is dominated by Hubble.
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Exponential growth of the mod functions

Strong

fragmentation

/ backreaction

Weak

fragmentation

/ backreaction
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What if fragmentation cannot stop the rolling of the axion?

The axion field is trapped when 1
2 φ̇

2(T∗) ≈ 2Λ4
b(T∗) or θ̇(T∗) ≈ 2m(T∗).
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Axion fragmentation after trapping

Even in the absence of fragmentation during rolling, the onset of oscillations are delayed which

can lead to efficient fragmentation even after trapping:

ρfluct

ρzero-mod
∼ Aθ

(
H(T∗)

m(T∗)

)2 ∫
dκ

κ
exp

m(T∗)

H(T∗)
B(κ)︸︷︷︸
∼O(1)

, κ =
k/a∗
m∗

.
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The paramater space of ALP dark matter with fragmentation
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Observational prospects (in progress)

After the fragmentation, the power spectrum of

the axion fluctuations becomes O(1):

Pφ(k ∼ m∗a∗) =
k3

2π2
|δφ(k)|2

∣∣∣∣
k∼a∗m∗

∼ O(1)

When these fluctuations reach to a critical

density, they experience gravitational collapse:

δ2
c (zcol) ' σ2

R(zcol) =

∫
d ln k Pφ(k , zcol)|W (k ,R)|2

Large fluctuations do collapse earlier yielding

much denser dark matter halos:

ρs ∼ 200ρφ(zcol) ∝ ρφ,0(1 + zcol)
3

Arvanitaki et al. 1909.11665
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Conclusions

• In models where the axion field has a large initial kinetic energy, axion fluctuations play a

prominent role, and can yield complete fragmentation.

• Under suitable conditions, the fragmentation can be effective before the axions gets

trapped by the potential, so that the rolling is stopped by the backreaction of the

fluctuations.

• Even if the fragmentation is not efficient prior to trapping, it can become efficient after

since the large initial kinetic energy delays the onset of oscillations allowing the axion to

probe non-quadratic parts of its potential.

• After the fragmentation, the power spectrum becomes O(1) which leads to much denser

dark matter halos.

• All the discussion is applicable to the QCD axion, to a generic ALP model, and also to

other kind of potentials such as monodromy (Ongoing project with Aleksandr Chatrchyan,

Matthias Koschnitzke, Géraldine Servant)

Stay tuned for our upcoming paper(s) for much more details!
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