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The Universe is Homogeneous on Large Scales

❖ Described by FLRW metric

d𝑠2 = 𝑎2 𝜂 −d𝜂2 + 𝛾𝑖𝑗d𝑥
𝑖d𝑥𝑗

❖ Obtained by solving the Einstein equations 
𝐺𝑎𝑏 𝑔𝑎𝑏 + Λ𝑔𝑎𝑏 = 8𝜋𝐺 𝑇𝑎𝑏

for an isotropic and homogeneous matter distribution



But Very Inhomogeneous on Small Scales

❖ Inside galaxies the density contrast is huge

❖ Only upon averaging over a large scale (∼ 100Mpc) does 𝑇𝑎𝑏
become homogeneous and isotropic (e.g. Coley & Ellis 2020). 

❖ But Einstein’s equations are not linear, so 𝐺𝑎𝑏 ≠ 𝐺𝑎𝑏(𝑔𝑎𝑏) .

❖ But we get FLRW from setting
𝐺𝑎𝑏(𝑔𝑎𝑏) + Λ𝑔𝑎𝑏 = 8𝜋𝐺𝑇𝑎𝑏 , as opposed to 

𝐺𝑎𝑏 + Λ𝑔𝑎𝑏 = 8𝜋𝐺 𝑇𝑎𝑏

❖ So something is possibly wrong.

❖ Averaging does not commute with the Einstein equations. This 
is the averaging (or back-reaction) problem.



Can a Background be defined?

❖ In cosmological perturbation theory, one splits the 
actual metric 𝑔𝑎𝑏 into a sum

𝑔𝑎𝑏 = 𝑔𝑎𝑏
𝐹𝐿𝑅𝑊 + ℎ𝑎𝑏 ,

❖ Perturbation theory consists of taking ℎ𝑎𝑏 small. 

❖ But its magnitude depends on scale and on gauge (e.g. 
Adamek et al. 2018). 

❖ Is a background-perturbation split at all justified?



Solving the Problem Requires Special Techniques

❖ Several proposals were put forward to address this 
problem, including:

❖ Special averaging techniques in curved space-time 
(e.g. Buchert 2000). 

❖ Special perturbative equations (Green & Wald 2011)

❖ However all relied on some assumptions, e.g. that there 
is a well-defined large-scale background metric. 



Multiple Scales Technique

❖ The multiple scales technique addresses perturbative problems where there are more 
than one scale.

❖ Examples are homogenisation of diffusion in inhomogeneous media, Chapman-Enskog
expansions,… (see, e.g., Pavliotis & Stuart, Springer, 2008). 

❖ Take a PDE, e.g. 𝛻2𝑢 = 𝑓, where 𝑓 𝑥 = 𝑔 𝑥,
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Scale Splitting

❖ This is combined with an asymptotic expansion 𝑢(𝑥, 𝑋)
∼ 𝑢0(𝑥, 𝑋) + 𝜀𝑢1(𝑥, 𝑋) + 𝜀2𝑢2(𝑥, 𝑋) + ⋯

❖ Inserting both into the original differential equation and solving 

iteratively yields solutions for 𝑢𝑖 .

❖ Must be combined with consistency conditions to ensure that the 
expansion remains asymptotic:

❖ These arise to ensure 𝜀𝑛𝑢𝑛 ≫ 𝜀𝑛+1𝑢𝑛+1. 

❖ Done by setting certain integration constants to zero.

❖ Freedom to do so ensured by the added degree of freedom.



Multiple-Scales Treatment of Einstein Equations

❖ Work in harmonic co-ordinates so 
that the equations are hyperbolic
(e.g. Choquet-Bruhat, OUP, 2009).

❖ Set 𝑥 as cosmological scales and 𝑋
as small scales (e.g. galactic scales)

❖ Expand derivatives and solve at 
increasingly higher orders in 
epsilon.

❖ Impose consistency requirement at 
all orders.



Multiple-Scales Treatment of Einstein Equations

Work with trace-reversed equation

𝑅𝑎𝑏 − Λ𝑔𝑎𝑏 = 8𝜋𝐺𝜌𝑎𝑏 ≡ 8𝜋𝐺 𝑇𝑎𝑏 −
1

2
𝑇𝑔𝑎𝑏

One Finds:

❖ 𝑋 space-time is flat, so okay to perform Fourier transform in it.   

❖ Averaged Einstein equation:
𝑅𝑎𝑏(𝑔𝑎𝑏

0 ) − Λ𝑔𝑎𝑏
0 = 8𝜋𝐺⟨𝜌𝑎𝑏

0 ⟩𝑋 + 𝐵𝑎𝑏,
where 𝐵𝑎𝑏 corresponds, roughly, to the X-averaged Newtonian 
gravitational potential energy. 

❖ Averaged equation agrees with that of Green & Wald (2011).



Orders 0 & 1

❖ The 𝑜𝑟𝑑 𝜀−2 equation is

❖ Can be solved consistently to define 𝑋-independent 
background 𝑔0 𝑥 only if 𝜌𝑎𝑏

−2 = 0, i.e. only Newtonian 
sources.

❖ Order -1 equation is a wave equation:
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−1



Second Order

❖ The equation for 𝑔𝑎𝑏
2 ⋅, 𝑋 contains 𝑔𝑎𝑏

1 ⋅, 𝑋 as a source 
for the wave-operator, due to non-linearity. 

❖ Problem: there might be resonances, which invalidate 
the asymptotic expansion 𝑔 ∼ 𝑔0 + 𝜀𝑔1 + 𝜀2𝑔2 +⋯.

❖ But 𝑔𝑎𝑏
1 ⋅, 𝑋 contains an as-yet undetermined term, 

𝑔hom 𝑎𝑏
1 (⋅, 𝑋). 

❖ This term is constrained to remove all resonant sources 
from the equation for 𝑔𝑎𝑏

2 ⋅, 𝑋 . 



Consistency Conditions

❖ Arise to tackle resonant terms.

❖ Additional equations possible (and necessary) because 
multiple-scales increases the number of degrees of freedom.

❖ At second order: 

❖ Turns out that for Newtonian sources they can be solved and 
resonances are consistently removed (Ginat 2021). 



Outcome:

❖ The multiple scales technique enables one to:

❖ Show that there is a well-defined background metric that depends 
only on the large-scale.

❖ Derive an effective Einstein equation where small-scale gravitational 
potential energy gravitates on the large scale.

❖ Determine the consistency conditions under which these conclusions 
obtain. 

❖ Future prospects:

❖ Go from asymptoticity to some sort of convergence, e.g., two-scale 
convergence (defined in, e.g., Allaire 1992).

❖ Include isolated relativistic sources, such as black holes or neutron 
stars. 



More to Explore

❖ See my paper: Y.B. Ginat, 2021, JCAP02(2021)049, arXiv: 
arXiv:2005.03026

❖ Or send me an e-mail: Barry Ginat, 
ginat@campus.technion.ac.il
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