Entropy in the early universe

Llorenç Espinosa-Portalés Instituto de Física Teórica UAM-CSIC

Work in collaboration with Juan García-Bellido, see: arXiv:2106.16012 and arXiv:2106.16014

EPS-HEP Conference 2021, July 28th 2021

"la Caixa" Foundation

- 1. Motivation
- 2. Reversible cosmology
- 3. Entropic forces in General Relativity
- 4. Non-equilibrium cosmology
- 5. Cosmic acceleration
- 6. Conclusions

Outline

1. Motivation

- General Relativity is a time-reversible theory.
- equilibrium epochs.
- and systematic way.

Most of the universe expansion history is adiabatic, but there are a few non-

• Irreversible phenomena are not included in General Relativity in a complete

2. Reversible cosmology

Homogeneous and isotropic universe

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega_{2}^{2} \right)$$

Filled with a perfect fluid

 $T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$

Friedmann equations

$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$ (F1)

+ Einstein

 $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p)$ (F2)

2. Reversible cosmology

What can we say about this perfect fluid? Energy conservation:

 $D_{\mu}T^{\mu\nu} = 0 \rightarrow \dot{\rho} + 3H(\rho + p) = 0$

But this also arises from the second law of thermodynamics

 $T\frac{dS}{dt} = \frac{d}{dt}(\rho a^{3}) + p\frac{d}{dt}(a^{3}) = 0$ Internal energy
Kork
Work

Which is true only in equilibrium

2. Reversible cosmology

Should we go beyond adiabatic cosmology?

Continuity equation becomes $\dot{\rho} + 3I$

Non-equilibrium F2

$$H(\rho + p) = \frac{T\dot{S}}{a^3}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3p - \frac{T\dot{S}}{a^3 H}\right)$$

6

Can we make the previous statement more rigorous?

We will use the variational formulation of non-equilibrium thermodynamics (Gay-Balmaz & Yoshimura, 2017)

Stationary-action principle

Defines the (physical)

Laws of thermodynamics

Variational problem — Imposes constraints on

Let us apply this formalism to General Relativity

$$\mathcal{S} = \frac{1}{2\kappa} \int d^4 x \sqrt{-g} R + \int d^4 x \mathscr{L}_m(g_{\mu\nu}, s)$$
$$\mathcal{S} = \int d^4 x \left(\frac{1}{2\kappa} \frac{\delta(\sqrt{-g}R)}{\delta g^{\mu\nu}} + \frac{\delta \mathscr{L}_m}{\delta g^{\mu\nu}} \right) \delta g^{\mu\nu} + \frac{\delta \mathscr{L}_m}{\delta g^{\mu\nu}} = 0$$

Add the constraint

$$\frac{\delta \mathscr{L}_m}{\delta s} \delta s = \frac{1}{2} \sqrt{-g} f_{\mu\nu} \delta g^{\mu\nu}$$

See LEP, J. García-Bellido arXiv:2106.16012

Full treatment of time-evolution done in the ADM formalism

Non-equilibrium Einstein field equation

 $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa \left(T_{\mu\nu} - f_{\mu\nu}\right)$ Friction or **Entropic force**

Consider a congruence of geodesics

$$\Theta_{\mu\nu} = D_{\nu}n_{\mu} = \frac{1}{3}\Theta h_{\mu\nu} + \sigma_{\mu\nu} + \omega_{\mu\nu} - a_{\mu}n_{\nu}$$

$$\pounds_n \Theta = -\frac{1}{3} \Theta^2 - \sigma_{\mu\nu} \sigma^{\mu\nu} + \omega_{\mu\nu} \omega^{\mu\nu} - R_{\mu\nu} n^{\mu} n^{\nu} + \Theta_{\mu\nu} \omega^{\mu\nu} - \Omega_{\mu\nu} n^{\mu} n^{\nu} + \Theta_{\mu\nu} n^{\mu} n^{\mu} n^{\nu} + \Theta_{\mu\nu} n^{\mu} n^{\mu} n^{\nu} + \Theta_{\mu\nu} n^{\mu} n^$$

If the strong energy condition $T_{\mu\nu}n^{\mu}n^{\nu} \ge -\frac{1}{2}T$ is satisfied and $a^{\mu} = 0$

$$\pounds_n \Theta + \frac{1}{3} \Theta^2 \le 8\pi G \left(f_{\mu\nu} n^{\mu} n^{\nu} + \frac{1}{2} f \right)$$

Collapse can be avoided by entropic forces

Temperature and entropy from the matter content

Hydrodynamical matter

$$\mathscr{L} = -\sqrt{-g}\rho(g_{\mu\nu},s)$$

Gravity and horizons

$$\mathcal{S}_{GHY} = \frac{1}{8\pi G} \int_{H} d^3 y \sqrt{hK}$$

 $T = -\frac{\partial L}{\partial S}$

4. Non-equilibrium cosmology

Homogeneous and isotropic universe

 $ds^{2} = -N(t)dt^{2} + a^{2}(t)\left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega_{2}^{2}\right)$

Filled with a fluid with

 $\rho = \rho(a, S)$ p = p(a, S)

Hamilton constraint

Hamilton equation

Choose N(t) = 1

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{4\pi G}{3}\tilde{f}$$

with $\tilde{f} = h^{ij} f_{ij}$

4. Non-equilibrium cosmology

Entropy production (P)reheating, phase transitions, black hole formation...

5. Cosmic acceleration

The entropy of the causal horizon in open inflation may explain cosmic acceleration

The GHY term introduces an entropic fluid

$$\rho_H a^2 = \frac{T_H S_H}{a} = \frac{x_0}{2G} \sinh(2a_0 H_0 \eta) \quad x_0 \equiv \frac{1 - \Omega_0}{\Omega_0} = e^{-2N} \left(\frac{T_{rh}}{T_{eq}}\right)^2 (1 + z_{eq})$$

It satisfies the non-equilibrium continuity equation

$$\dot{\rho}_H + 3H(\rho_H + p_H) = \frac{T_H S_H}{a^3}$$

See J. García-Bellido, LEP arXiv:2106.16014

5. Cosmic acceleration

14

6. Conclusions

- The laws of thermodynamics modify the dynamics of any physical system and break time reversibility.
- The Lagrangian and Hamiltonian formulations of General Relativity can be modified to include the second law of thermodynamics.
- In Cosmology, this means the appearance of an additional term of entropic origin in the second Friedmann equation.
- The effect of non-adiabatic phenomena in the expansion history of the universe should be revisited.
- The entropy of the causal horizon can explain cosmic acceleration and the Hubble tension.