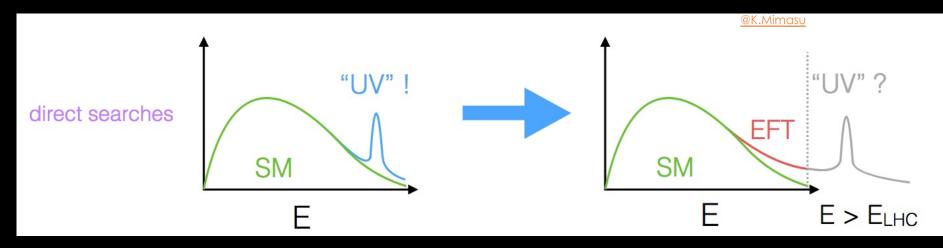
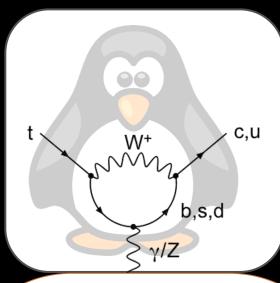
RESULTS ON RARE AND BSM TOP QUARK INTERACTIONS


EPS-HEP-2021 29 July 2021

On behalf of the ATLAS and CMS Collaborations

Search for physics BSM

- > Standard Model (SM) has been very successful at explaining experimental data
- Some unanswered questions
 - > Nature of dark matter, origin of flavor, neutrino mass, matter-antimatter asymmetry,...
 - > Experimental hints from SM deviations in flavor sector
- ➤ we keep searching beyond the SM
 - > Direct searches when new physics (NP) scale is with the reach of the LHC's collision energy
 - Resonant or non-resonant production of new particles
 - > Indirect searches when NP energy is beyond the reach of the LHC's collision energy
 - Rare production and decay of top quark
 - Deviations from SM in measurements of top properties

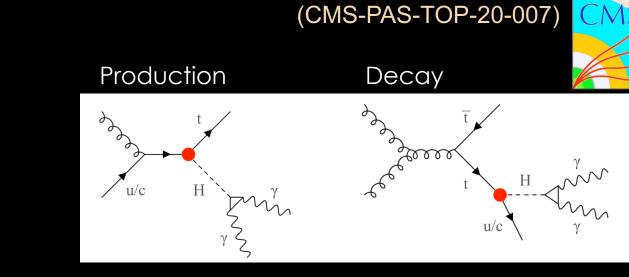


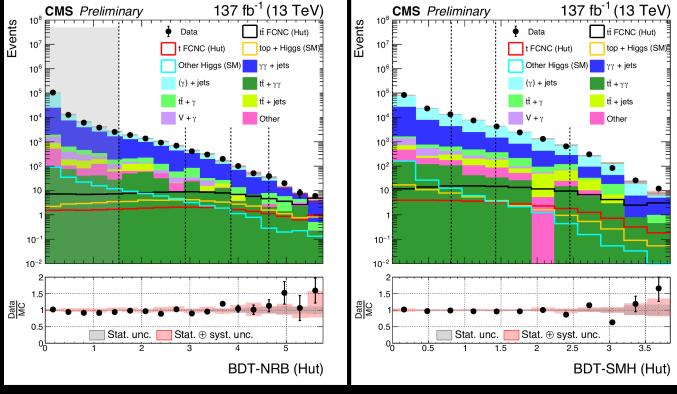
Search for FCNC in the top sector

- Flavor changing neutral currents (FCNC) allow for transitions between quarks of different flavor but same electric charge
- FCNC processes are highly suppressed in the SM due to the GIM mechanism
 - Small contributions appear at one loop level
- Many extensions of the SM predict the presence of FCNC and give rise to detectable FCNC amplitude

	\mathbf{SM}	QS	2HDM	FC 2HDM	MSSM	₿ SUSY
$t \rightarrow uZ$	8×10^{-17}	$1.1 imes 10^{-4}$	-	-	$2 imes 10^{-6}$	3×10^{-5}
$t \to u \gamma$	3.7×10^{-16}	7.5×10^{-9}	-	-	2×10^{-6}	1×10^{-6}
$t \to ug$	3.7×10^{-14}	$1.5 imes 10^{-7}$	_	-	8×10^{-5}	$2 imes 10^{-4}$
$t \to u H$	2×10^{-17}	4.1×10^{-5}	5.5×10^{-6}	-	10^{-5}	$\sim 10^{-6}$
$t \to c Z$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	2×10^{-6}	3×10^{-5}
$t \to c \gamma$	4.6×10^{-14}	7.5×10^{-9}	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
$t \to cg$	4.6×10^{-12}	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	2×10^{-4}
$t \to c H$	3×10^{-15}	4.1×10^{-5}	1.5×10^{-3}	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

Branching ratios for top FCN decays in the SM, models with Q = 2/3 quark singlets (QS), a general 2HDM, a flavour-conserving (FC) 2HDM, in the MSSM and with R parity violating SUSY.

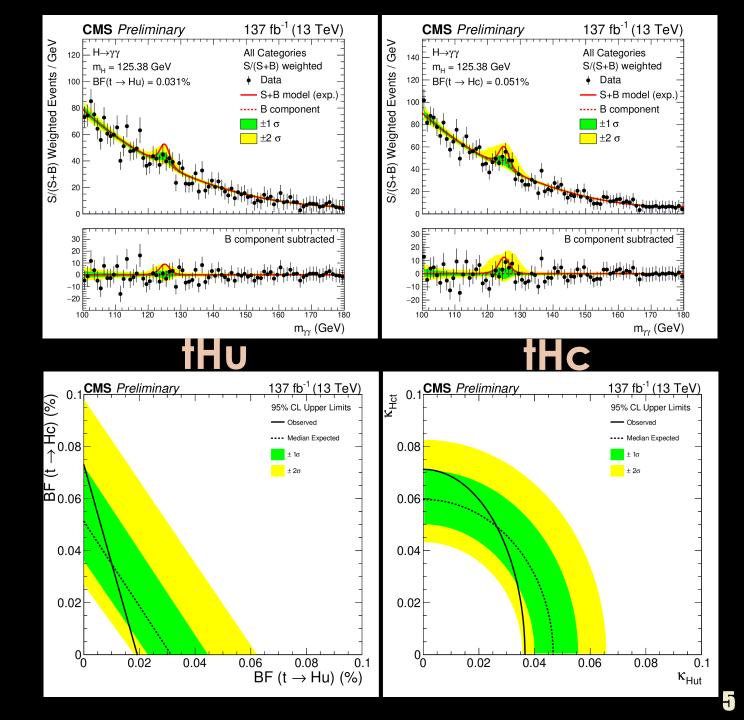

Any evidence of FCNC will indicate the existence of new physics


Aguilar-Saavedra, ACTA Phys. Pol. B 35(2004)

Search for the FCNC tHq interaction

- > Search for tHq (q = u,c), $\mathbf{H} \rightarrow \mathbf{y}\mathbf{y}$ [137 fb⁻¹]
- Production & decay
- > Signal regions: 2 photons, $100 < m_{\gamma\gamma} < 180 \text{ GeV}$
 - ➢ leptonic: ≥1 jet, ≥1ℓ
 - ➤ hadronic: ≥3 jet, ≥1 b-jet
- Backgrounds
 - resonant: ttH, VH, VBF, ggH, bbH, tH
 - > non-resonant: $\gamma(\gamma)$ +jets, tt+ $\gamma(\gamma)$, V+ γ

- ➤ Strategy
 - > 8 BDTs: (u, c) × (lep, had) × (res, non-res bkg)
 - 7 categories defined by BDT score
 - 14 m_{yy} distributions to fit

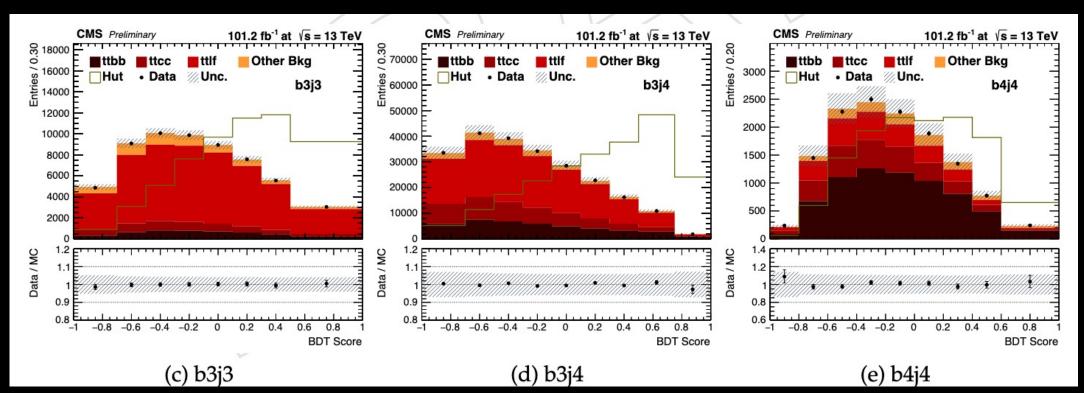

Resonant BG

Non-resonant BG

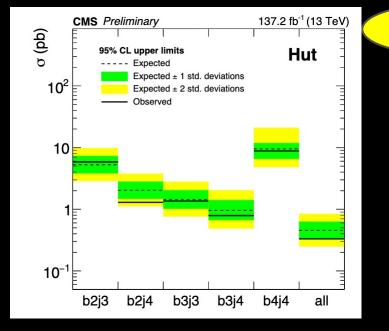
Signal modeling: effective Lagrangian

$$\mathcal{L} = \sum_{q=u,c} \frac{g}{\sqrt{2}} \bar{t} \kappa_{Hqt} \Big(F_{Hq}^{L} P_{L} + F_{Hq}^{R} P_{R} \Big) qH + \text{h.c.},$$

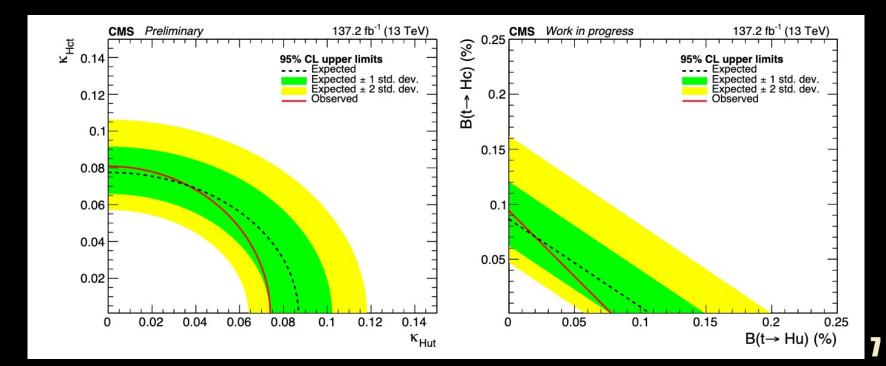
- Dominant uncertainties: b-tagging and γ identification
- Data compatible with absence of signal
- Upper limits on the signal cross sections are translated to the strength of the tqH anomalous couplings and related branching fractions
- ➢ 95% CL upper limits:
 - ➢ B(t→Hu) < 1.9×10⁻⁴ (exp. 3.1×10⁻⁴)
 - ➢ B(t→Hc) < 7.3×10⁻⁴ (exp. 5.1×10⁻⁴)



Search for the FCNC tHq interaction


- > Searches for tHq (q = υ ,c), **H** \rightarrow **bb** [137 fb⁻¹]
- Production & decay
- > Signal region: 1 ℓ , ≥3 jet, ≥2 b-jet
- A deep neural network is used to associate the reconstructed objects to the matrix-element partonic final state
- > BDTs are used to distinguish the signal from the background events

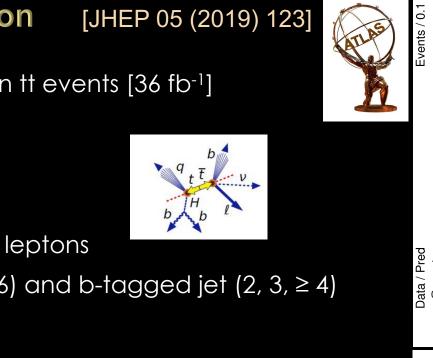
(CMS-PAS-TOP-19-002)

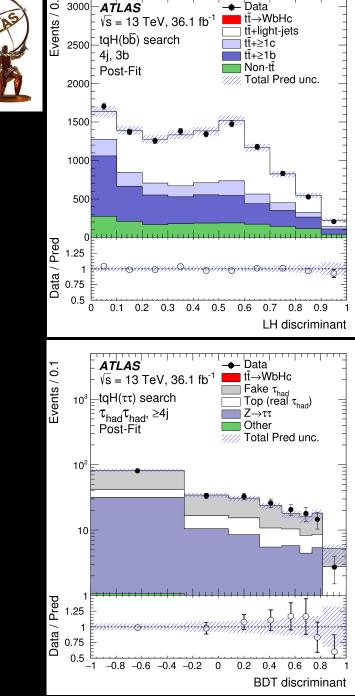

- No significant excess with respect to the SM background expectations
 - \succ 95% CL limits are set on the xs, couplings and BRs
- > All bjet-jet categories are combined
 - > The b3j4 category has the highest sensitivity
- Significant improve with respect to the early run-2 search
 JHEP 06 (2018) 102

new

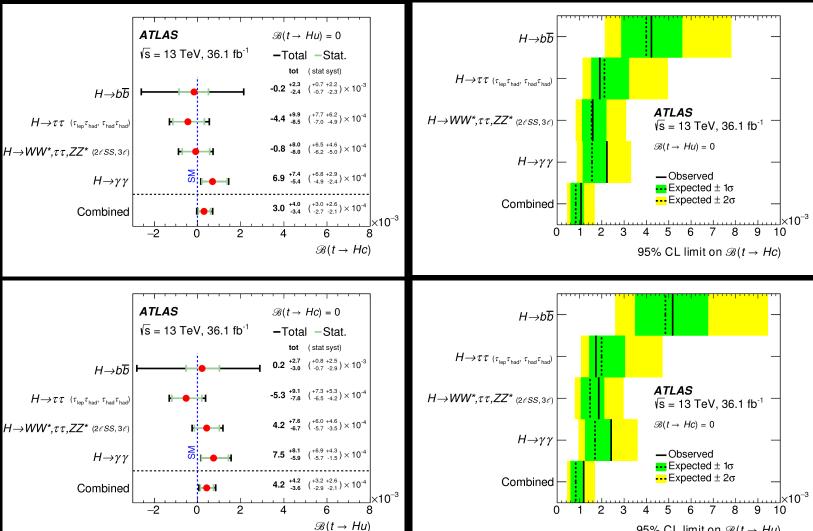
Upper limits:

- ➢ B(t→H∪) <</p>
 - ➢ obs: 8 ×10⁻⁴
 - ➤ exp: 11×10-4
- ➢ B(t→Hc) <</p>
 - ➢ obs: 9 ×10⁻⁴
 - ➢ Exp: 9 ×10⁻⁴

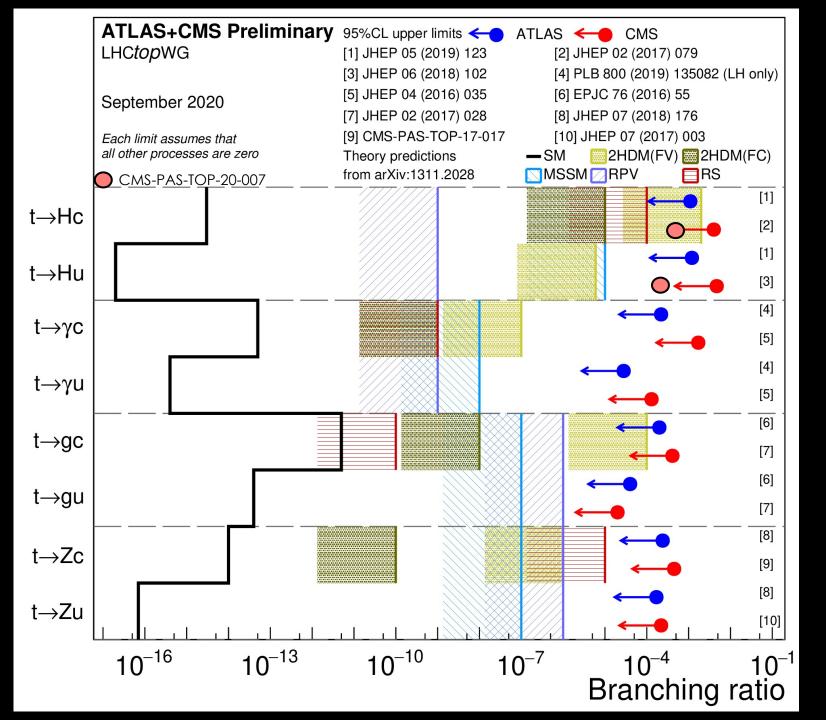



Search for the FCNC tHq interaction

- > Searches for tHq (q = u,c) FCNC decays in tt events [36 fb⁻¹]
- ≻ H→bb
 - > Single lepton, \geq 4 jets (2 b-tagged)
 - Backgrounds: ttbar+HF/LF
 - Data-driven estimate for non prompt leptons
 - > Event classification on the jet (4, 5, \geq 6) and b-tagged jet (2, 3, \geq 4)
 - Likelihood-based discriminant


\succ H \rightarrow $\tau\tau$

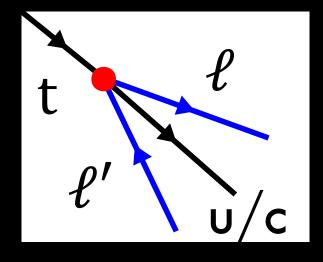
- > Single lepton ($\tau_{lep}\tau_{had}$), di-tau ($\tau_{had}\tau_{had}$), ≥ 3 jets (1 b-tagged)
- > Backgrounds: fakes (ttbar), $Z \rightarrow \tau \tau$
- > Data-driven estimate for fake τ_{had}
- > Event classification on the jet multiplicity $(3j, \ge 4j)$
- BDT discriminant


- No significant excess of events above the background expectation is found
 - > 95% CL upper limits on the t→Hq
- Results are combined with
 - ➢ H→γγ [JHEP10 (2017) 129]
 - ► H→WW*, ττ, ZZ* (2ℓ∨SS,3ℓ) [Phys. Rev. D 98, 032002]

95% CL limit on $\mathscr{B}(t \rightarrow Hu)$

FCNC summary

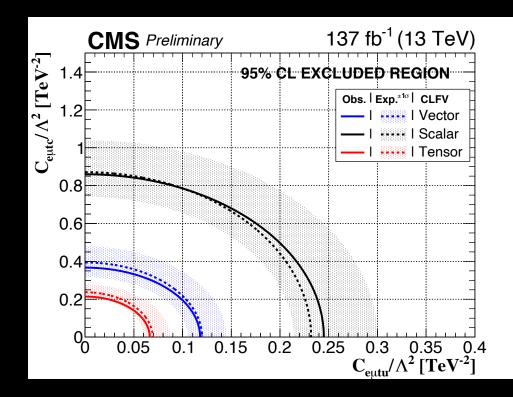
- Search for FCNC are performed in various channels
- start probing models
 predicting highest branching
 ratios

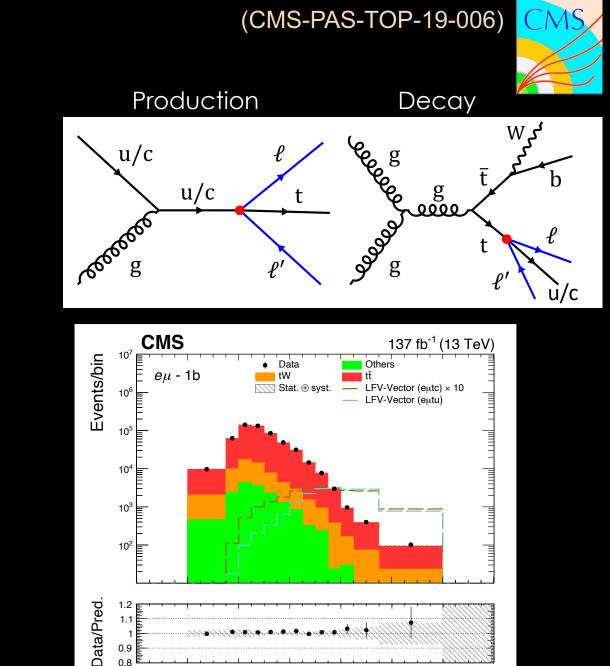


Search for LFV in the top sector

- \succ In the SM, lepton flavor is conserved in all interactions
 - The neutrino mass terms predict charged Lepton flavor violation (CLFV) at loop level (highly suppressed due to the tiny values of neutrino masses)
- Many new physics models predict sizable CLFV (neutrino mass models, multi-Higgs doublet models,...)
- If the new physics responsible for the CLFV is at scales beyond what the LHC can directly probe, the SM Lagrangian can be extended by dimension-6 operators

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{x} rac{C_{x}}{\Lambda^{2}} O_{x} + \dots$$
 ,


- CLFV interaction types
 - Vector: $O_{lq}^{1(ijkl)}$, $O_{lq}^{3(ijkl)}$, $O_{lu}^{(ijkl)}$, $O_{eq}^{(ijkl)}$, $O_{eu}^{(ijkl)}$
 - Scalar: $O_{legu}^{1(ijkl)}$
 - Tensor: $O_{leav}^{3(ijkl)}$



$O_{ m lq}^{(3)ijkl}$	=	$(\overline{\mathbf{l}}_i \gamma^{\mu} \tau^I \mathbf{l}_j) (\overline{\mathbf{q}}_k \gamma^{\mu} \tau^I \mathbf{q}_l),$
$O_{ m lq}^{(1)ijkl}$	=	(=
$O_{ m lu}^{ijkl}$	=	$(\overline{\mathbf{l}}_i \gamma^{\mu} \mathbf{l}_j) (\overline{\mathbf{u}}_k \gamma^{\mu} \mathbf{u}_l)$,
$O_{ m eq}^{ijkl}$	=	$(ar{\mathbf{e}}_i \gamma^\mu \mathbf{e}_j) (\overline{\mathbf{q}}_k \gamma^\mu \mathbf{q}_l)$,
$O_{ m eu}^{ijkl}$	=	$(\bar{\mathbf{e}}_i \gamma^{\mu} \mathbf{e}_j) (\overline{\mathbf{u}}_k \gamma^{\mu} \mathbf{u}_l),$
$O_{ m lequ}^{(1)ijkl}$	=	$(\overline{\mathbf{l}}_i \mathbf{e}_j) \ \epsilon \ (\overline{\mathbf{q}}_k \mathbf{u}_l)$,
$O_{ m lequ}^{(3)ijkl}$	=	$(\bar{\mathbf{l}}_i \sigma^{\mu\nu} \mathbf{e}_j) \ \epsilon \ (\overline{\mathbf{q}}_k \sigma_{\mu\nu} \mathbf{u}_l),$

Search for the $e\mu$ LFV interactions

- > Search for CLFV in e_{μ} final state [137 fb⁻¹]
- \succ Production & decay
- Signal: CLFV vector, scalar and tensor
- > BDT is used to discriminate signal from BG events
- Data consistent with SM expectation
 - ➤ Upper limits are set at 95% CL

0.9

0.8 ⋿__ _0.6

-0.4

-0.2

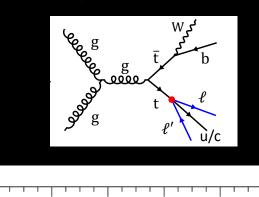
n

0.2

0.4

0.6

BDT discriminant


0.8

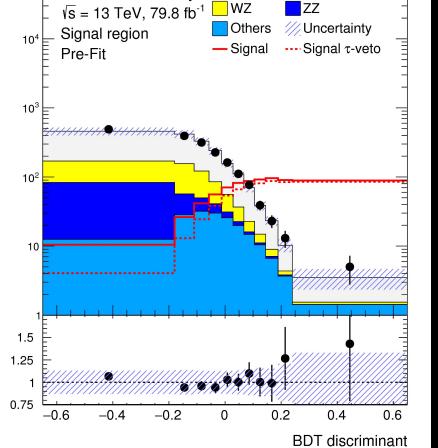
Search for the $e\mu$ LFV interactions

- Search for CLFV in final states with thre leptons [80 fb⁻¹]
- Decay only
- CLFV top reconstructed from two opposite sign different-flavour leptons and a jet
- Non-prompt background: ttbar, Z+jets, estimated with matrix method in data (dominant uncertainty)
- Prompt background: WZ, ZZ
- BDT is used to discriminate signal from BG events
- Data consistent with SM expectation
 - ➢ Upper limits are set at 95% CL

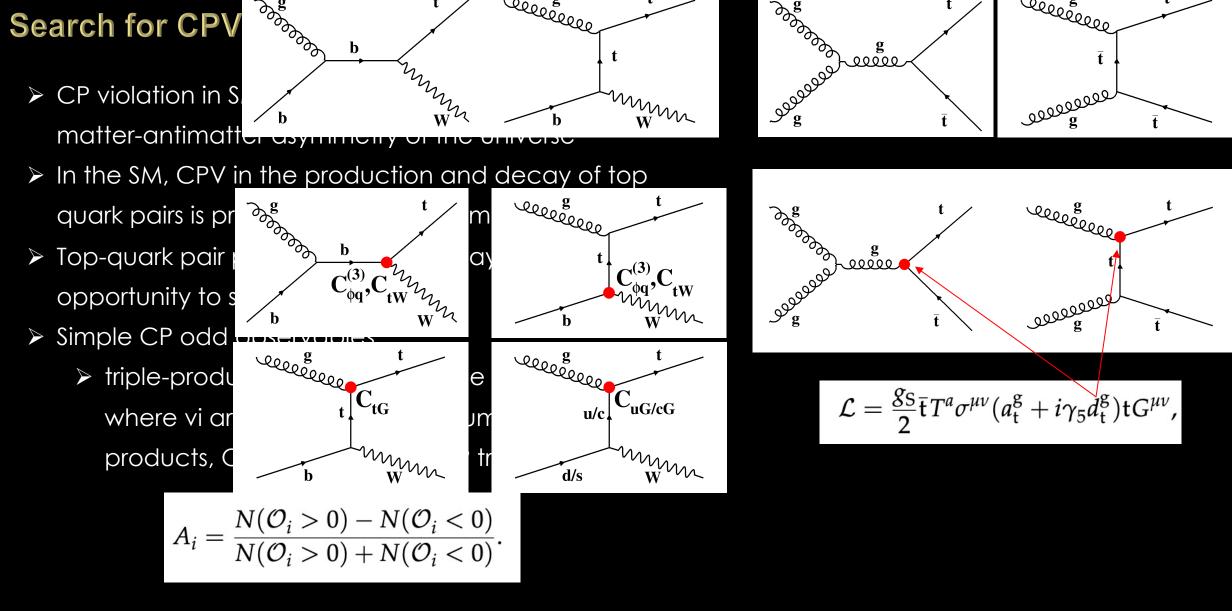
B(t→ℓℓ'q) < 1.86(1.36)×10⁻⁵ obs (exp) B(t→eµq) < 6.6(4.8)×10⁻⁶ obs (exp)

ATLAS Preliminary

aed

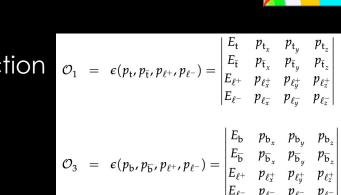

Events

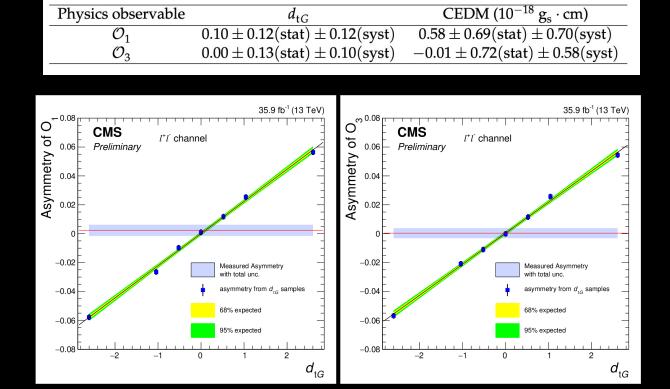
Data / Pred.

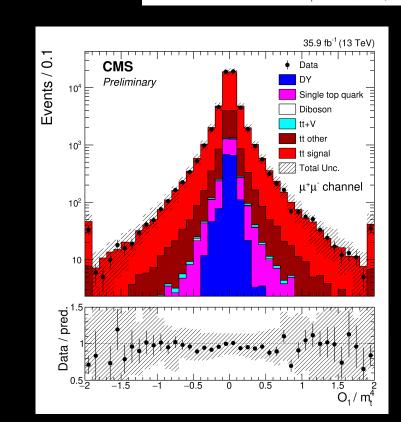

(ATLAS-CONF-2018-044)

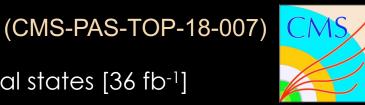
Data

Non-prompt

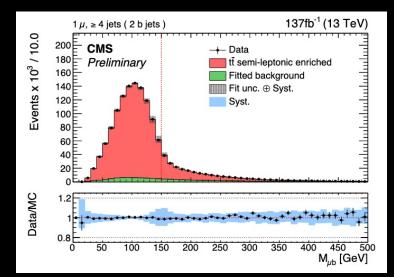

13

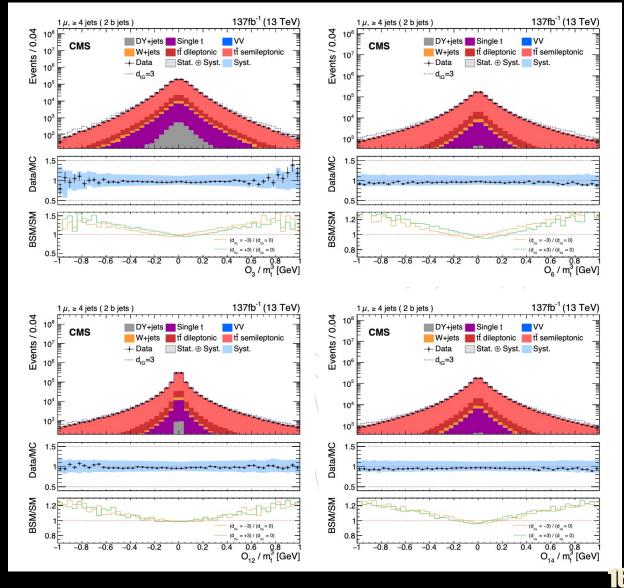



chromo-electric dipole moment (CEDM) of top quark in top pair production induces CPV

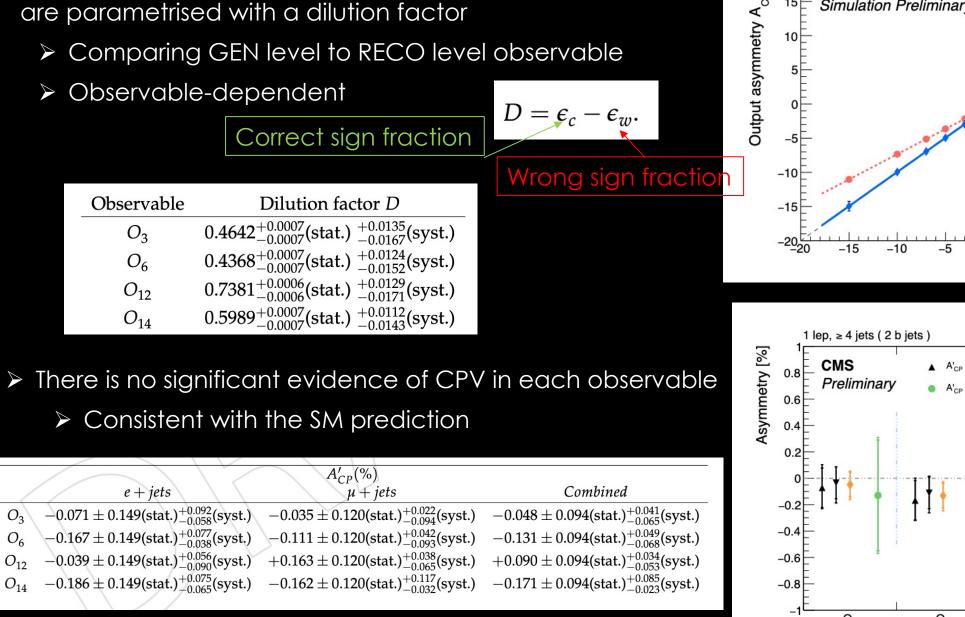

Search for the CPV interactions

- > Extraction the asymmetry and CEDM in top pair events in the dilepton final states [36 fb⁻¹]
- Observables; O₁ and O₃ (Phys. Rev. D 93, 014020 (2016))
- > The measured asymmetries are consistent with the Standard Model prediction $O_1 = \epsilon(p_t, p_{\bar{t}}, p_{\ell^+}, p_{\ell^-}) = \epsilon(p_t, p_{\bar{t}}, p_{\ell^+}, p_{\ell^-})$
- Asymmetry and CEDM have linear correlation
- > CEDM is extracted by exploiting its correlation with the asymmetry

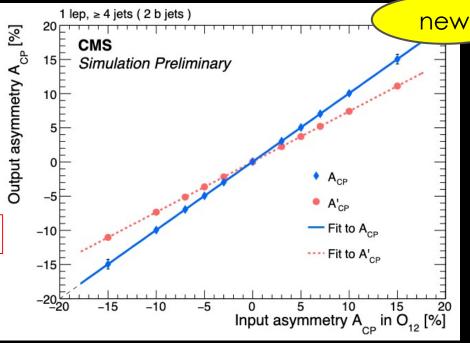


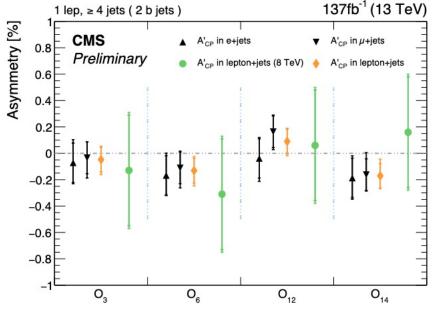

Search for the CPV interactions

- Lepton + jets final states [137 fb⁻¹]
- Observables; O₃, O₆, O₁₂ and O₁₄ (Phys. Rev. D 93, 014020 (2016))


$$\begin{split} O_{3} &= Q_{\ell} \epsilon(p_{\rm b}, p_{\bar{\rm b}}, p_{\ell}, p_{j_{1}}) \propto Q_{\ell} \vec{p'}_{\rm b} \cdot (\vec{p'}_{\ell} \times \vec{p'}_{j_{1}}) \\ O_{6} &= Q_{\ell} \epsilon(P, p_{\rm b} - p_{\bar{\rm b}}, p_{\ell}, p_{j_{1}}) \propto Q_{\ell} (\vec{p}_{\rm b} - \vec{p}_{\bar{\rm b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j_{1}}) \\ O_{12} &= q \cdot (p_{\rm b} - p_{\bar{\rm b}}) \epsilon(P, q, p_{\rm b}, p_{\bar{\rm b}}) \propto (\vec{p}_{\rm b} - \vec{p}_{\bar{\rm b}})_{z} \cdot (\vec{p}_{\rm b} \times \vec{p}_{\bar{\rm b}})_{z} \\ O_{14} &= \epsilon(P, p_{\rm b} + p_{\bar{\rm b}}, p_{\ell}, p_{j_{1}}) \propto (\vec{p}_{\rm b} + \vec{p}_{\bar{\rm b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j_{1}}). \end{split}$$

- > Top quark and antiquark candidates are reconstructed using a χ^2 sorting algorithm
- The background contribution in the signal region is estimated from a fit to the mass distribution M_{lb}





Experimental factors that affect the measurements

Summary

- > LHC is efficient top quark factory, allow ATLAS and CMS for rare top quark interactions
 - ➤ FCNC
 - CLFV
 - ➢ CPV
 - tZq (see David Walter talk)
 - Four-top-quarks (see Paolo Sabatini talk)
 - ▶ ...
- Contribution of the new physics can be parameterized using effective field theory
- > Results are well in agreement with the SM prediction and no significance deviation is observed
- > More searches are performed with full run-2 data and will be published soon, stay tuned!

Thanks for your attention