

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

on behalf of LHeC/FCC-he Study Group

Study of Top Quark FCNC Processes at LHeC and FCC-he: An Attempt to analyse the Lorentz structure of FCNC couplings

30 July, 2021

Based on, Ref: [PRD 100, 015006 (2019), arXiv-2007.02236 S. Behera]

Dr. Subhasish Behera (Johannes Gutenberg University, Mainz, Germany) Email: <u>subhparasara@gmail.com</u>, / <u>sbehera@uni-mainz.de</u>

Table of contents

01 Theory I :EFT Lagrangian, Vector and Tensor couplings

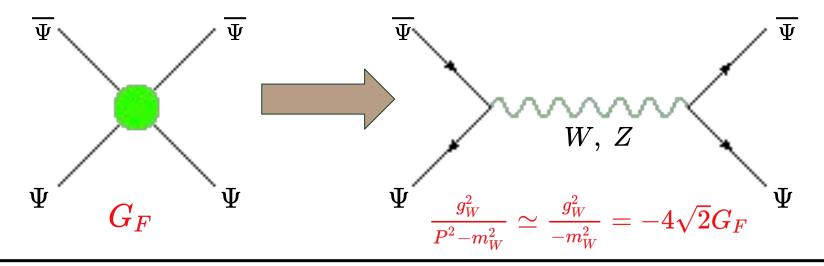
Theory II

:Density matrix and Polarization parameters, Asymmetries

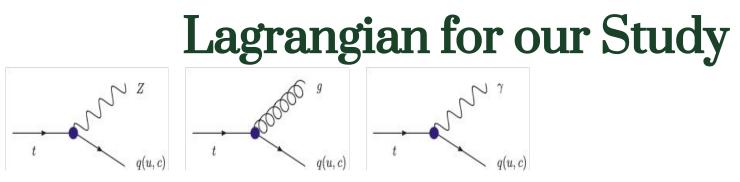
Simulation & Analysis

:MadGraph5, Pythia6 and Root for Cut Based approach

Concluding Remarks


:Results and Motivation

:EFT Lagrangian, Vector and Tensor couplings


Theory I

 $\mathbf{0}$

EFT: Why and How?

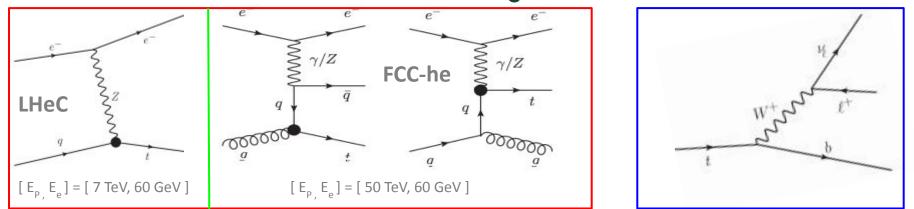
- If the energy scale of new physics is beyond the reach of recent experiments
- Parameterising lack of information in terms of higher mass dimension operators

The complete Effective Lagrangian for top FCNC: [AguilarSaavedra:2008zc]

$$\begin{split} -\mathcal{L}_{\mathrm{fenc}} =& g_{s} \bar{q} \lambda^{a} \frac{i \sigma^{\mu \nu} q_{\nu}}{\Lambda} (\kappa_{gqt}^{L} P_{L} + \kappa_{gqt}^{R} P_{R}) t G_{\mu}^{a} \\ &+ e \bar{q} \frac{i \sigma^{\mu \nu} q_{\nu}}{\Lambda} (\kappa_{\gamma qt}^{L} P_{L} + \kappa_{\gamma qt}^{R} P_{R}) t A_{\mu} \\ &+ \frac{g}{2c_{W}} \bar{q} \gamma^{\mu} (X_{zqt}^{L} P_{L} + X_{zqt}^{R} P_{R}) t Z_{\mu} \\ &+ \frac{g}{2c_{W}} \bar{q} \frac{i \sigma^{\mu \nu} q_{\nu}}{\Lambda} (\kappa_{zqt}^{L} P_{L} + \kappa_{zqt}^{R} P_{R}) t Z_{\mu} + \mathrm{H.c.} \end{split}$$
Where, $q(\bar{q}) = u(\bar{u}), c(\bar{c})$ and $q_{\nu} = (P_{t} - P_{q})$ is the momentum transferred.

FCNC Decay width

$$\begin{split} &\Gamma_{T}(t \to qg) = \frac{2\alpha_{s}}{3} |\kappa_{gqt}^{L,R}|^{2} \frac{m_{t}^{3}}{\Lambda^{2}}, \\ &\Gamma_{T}(t \to q\gamma) = \frac{\alpha}{2} |\kappa_{\gamma qt}^{L,R}|^{2} \frac{m_{t}^{3}}{\Lambda^{2}}, \\ &\Gamma_{V}(t \to qZ) = \frac{\alpha}{32s_{W}^{2}c_{W}^{2}} |X_{zqt}^{L,R}|^{2} \frac{m_{t}^{3}}{M_{Z}^{2}} \left[1 - \frac{M_{Z}^{2}}{m_{t}^{2}}\right]^{2} \left[1 + 2\frac{M_{Z}^{2}}{m_{t}^{2}}\right], \\ &\Gamma_{T}(t \to qZ) = \frac{\alpha}{16s_{W}^{2}c_{W}^{2}} |\kappa_{zqt}^{L,R}|^{2} \frac{m_{t}^{3}}{\Lambda^{2}} \left[1 - \frac{M_{Z}^{2}}{m_{t}^{2}}\right]^{2} \left[2 + \frac{M_{Z}^{2}}{m_{t}^{2}}\right], \end{split}$$


The subscript (T) and (V) represents the decay width involving either a vector or a tensor coupling, respectively.

Theory II :Density matrix and Polarization parameters, Asymmetries

Subhasish Behera (JGU Mainz, DE)

02

Density Matrix Formalism

The top quark on-shell condition in the NWA allows one to write the differential cross section of the complete process as:

$$rac{1}{\sigma_t}rac{d\sigma_t}{d\Omega_t} = rac{1}{4\pi} \sum_{\lambda,\lambda'} \sigma(\lambda,\lambda') \Gamma(\lambda,\lambda') \ rac{1}{\sigma_{
m prod}} \int
ho(\lambda,\lambda') \, d\Omega_t,$$

Density Matrix Formalism

Polarization Vector: $\mathbf{P} = (P_x, P_y, P_z)$

The normalized production density matrix elements can be written as:

$$egin{array}{rll} \sigma(+,+) &=& rac{1}{2}(1+P_z) & & \sigma(+,-) &=& rac{1}{2}(P_x+iP_y) \ \sigma(-,-) &=& rac{1}{2}(1-P_z) & & \sigma(-,+) &=& rac{1}{2}(P_x-iP_y) \end{array}$$

The normalized decay density matrix elements can be written as:

$$egin{array}{lll} \Gamma(+,+) &=& rac{1}{2}(1+cos heta_l) & \Gamma(+,-) &=& rac{1}{2}sin heta_l\ e^{i\phi_l} \ \Gamma(-,-) &=& rac{1}{2}(1-cos heta_l) & \Gamma(-,+) &=& rac{1}{2}sin heta_l\ e^{-i\phi_l} \end{array}$$

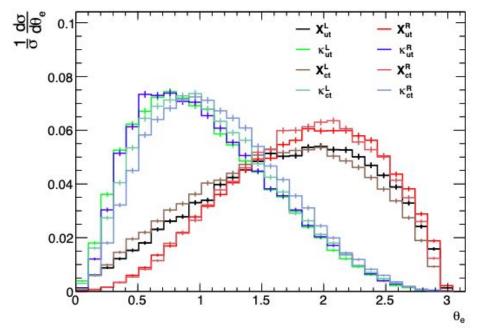
Where, Θ_l and ϕ_l are the polar and azimuthal angle of the secondary lepton in the top quark rest frame. Subhasish Behera (JGU Mainz, DE)

Polarization Parameters & Spin observables **Observables**

Г

2.7

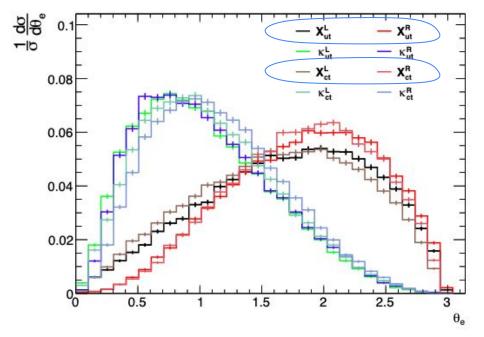
٦.


$$\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma}{d\Omega_{\ell}} = \frac{1}{4\pi} \left(1 + P_z \cos \theta_{\ell} + P_y \sin \theta_{\ell} \sin \phi_{\ell} \right) = \frac{1}{\sigma_{\text{tot}}} \left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi_{\ell} \frac{d\sigma}{d\phi_{\ell}} - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi_{\ell} \frac{d\sigma}{d\phi_{\ell}} \right] = \frac{1}{2} P_x$$

$$A_x \equiv \frac{1}{\sigma_{\text{tot}}} \left[\int_{0}^{\pi} d\phi_{\ell} \frac{d\sigma}{d\phi_{\ell}} - \int_{-\pi}^{2\pi} d\phi_{\ell} \frac{d\sigma}{d\phi_{\ell}} \right] = \frac{1}{2} P_y,$$

$$A_z \equiv \frac{1}{\sigma_{\text{tot}}} \left[\int_{0}^{1} dc_{\theta_{\ell}} \frac{d\sigma}{dc_{\theta_{\ell}}} - \int_{-1}^{0} dc_{\theta_{\ell}} \frac{d\sigma}{dc_{\theta_{\ell}}} \right] = \frac{1}{2} P_z$$
Top quark Rest frame
$$A_e^{FB} \equiv \frac{\sigma(\cos \theta_e > 0) - \sigma(\cos \theta_e < 0)}{\sigma(\cos \theta_e > 0) + \sigma(\cos \theta_e < 0)}$$

Ref: [PRD 100, 015006 (2019), arXiv-2007.02236 S. Behera


Polarization Parameters & Spin observables

The distributions of polar angle of the scattered electron in the **Lab Frame** of the collider.

→ The Distributions clearly shows the distinction between the vector and tensor couplings.

Polarization Parameters & Spin observables

The distributions of polar angle of the scattered electron in the Lab Frame of the collider.

→ The Distributions clearly shows the distinction between the vector and tensor couplings.

03 Simulation & Analysis

:MadGraph5, Pythia6 and Root for Cut Based approach

Methodology

MC setup/Observables

- PDF set: CTEQ6L1, μF=μR=mt,
- Leptons and/or Jets are reconstructed with anti-kT algorithm with cone size of R = 0.4
- Selection Cuts [tZq analysis]
 N_e= N_e, b-jet</sub> = N_e, b-jet, l+</sub> = 1
- Selection Cuts [tgq & t q analysis]

•
$$N_{e-} = N_{e-, b-jet} = N_{e-, b-jet, mu+/mu-} = 1$$

- N_{Light-jets}>= 1
- Yμ>2.6

Lagrangian \rightarrow UFO(FeynRules-2.0)

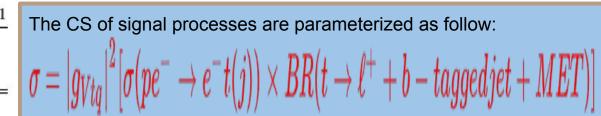
MadGraph5 aMC@NLO

PYTHIA v6 (ep-compartable)

Fast Sim.: Delphes v3

MadAnalysis5 & ROOT

CS and Selection Cuts


LHeC

Coupling	Cross	section σ in	n fb for P_e =	= -80%
g _{Ztq}	Basic Cuts	$N_{e^-}=1$	$N_{e^-,b}=1$	$N_{e^-,b,\ell^+} = 1$
X_{ut}^L	1957.57	1763.82	799.65	745.57
X_{ut}^R	1642.47	1485.97	706.09	629.54
κ_{ut}^L	706.77	636.65	304.56	279.13
κ_{ut}^R	1038.68	933.47	474.90	427.77
X_{ct}^L	136.76	122.54	66.90	62.84
X_{ct}^R	103.82	93.05	51.26	47.65
κ_{ct}^L	26.37	23.65	12.96	12.09
κ_{ct}^{R}	60.00	53.33	29.70	27.45

	$\mathcal{P}($			
	100	, n 🗖	n (e.	
-	>			

Coupling	κ_{gut}^L	κ_{gut}^R	$\kappa^L_{\gamma ut}$	$\kappa^R_{\gamma ut}$	κ_{gct}^L	κ_{gct}^R	$\kappa^L_{\gamma ct}$	$\kappa^R_{\gamma ct}$	Bkg
$e^-p \to e^-tj$	$\rightarrow e^- bj$	$\ell^+ \nu$ (be	oth e^+ a	and μ^+ i	include	d)			
Basic Cuts	1058.0	1113.2	3198.0	3190.0	498.5	546.2	1420.2	1420.0	485.0
$N_{e^-}=N_{\ell^+}=N_b=1,\ N_j\geqslant 1$	515	550.0	1631.7	1623.2	245.9	271.5	728.1	737.0	8.5
$Y_{\mu^+}>2.6$	290.1	287.6	530.3	715.8	105.4	82.8	155.9	219.0	0.023
8	e^-p –	$\rightarrow e^- \bar{t} j$ -	$\rightarrow e^- j\mu$	-ν					
Basic Cuts	259.4	266.1	831.7	829.1	244.0	248.8	709.4	708.9	485.0
$N_{e^-}=N_{\mu^-}=N_b=1,\ N_j\geqslant 1$	146.4	150.1	467.7	480.1	130.6	128.8	374.1	376.6	4.8
$Y_{\mu^-}>2.6$	65.8	53.6	102.5	151.0	58.3	47.2	79.6	118.2	0.009

$N_{e^-,b,\ell^+} = 1$
0.63
0.00
1.64

Spin Observables

FCC-he

	1	No pol.			$P_{e^-}=-80\%$			$P_{e^-} = +80\%$		
Coupling	A_x	A_z	$A_{e^-}^{FB}$	A_x	A_z	$A_{e^{-}}^{FB}$	A_x	Az	$A_{e^-}^{FB}$	
κ_{gut}^L	-0.20	-	-0.22	-0.27	-	-0.28	-0.21	-	-0.20	
κ_{gut}^R	0.14	0.40	-0.15	0.16	0.42	-0.23	0.11	0.41	-0.16	
$\kappa^L_{\gamma ut}$	-0.33	-0.12	-	-0.31	-0.11	- 37	-0.30	-0.16	-	
$\kappa_{\gamma ut}^R$		0.46	1		0.47	8.75	=	0.48		

Top quark

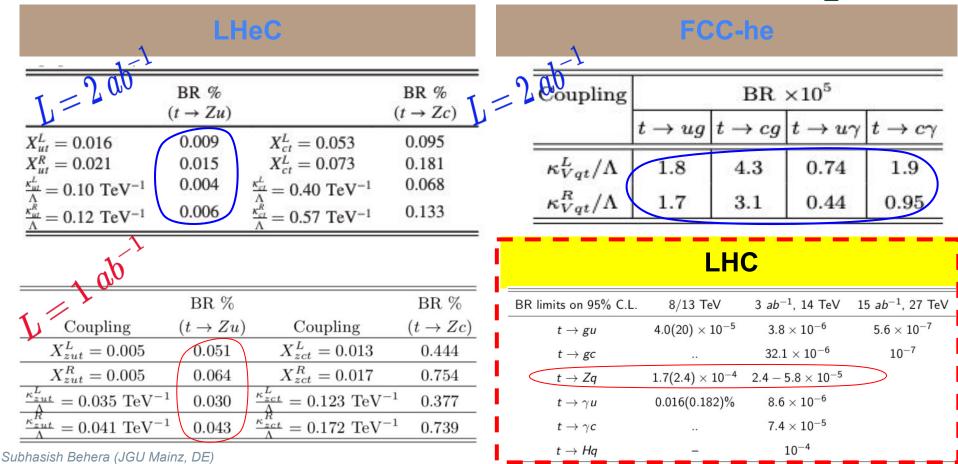
	No pol.			$P_{e^-} = -80\%$			$P_{e^-} = +80\%$		
Coupling	A_x	A_z	$A_{e^-}^{FB}$	A_x	A_z	$A_{e^-}^{FB}$	A_x	A_z	$A_{e^{-}}^{FB}$
κ^L_{gut}	-0.35	0.26	-0.48	-0.32	0.28	-0.48	-0.34	0.19	-0.46
κ_{gut}^R	-	0.33	-0.39	-	0.41	-0.47	-	0.32	-0.35
$\kappa^L_{\gamma ut}$	-0.44	-	-0.25	-0.43	-	-0.28	-0.45	-	-0.28
$\kappa^R_{\gamma ut}$	-0.11	0.54	-0.44	-0.14	0.56	-0.37	-	0.53	-0.39

LHeC

		Left-polar	-polarized <i>e</i> -beam		
Coupling	A_x	A_z	A_e^{FB}		
X^L	-0.16	-0.43	-0.18		
κ^L	-0.17	-0.46	+0.63		
X^R	+0.07	+0.32	-0.33		
κ^R	+0.04	+0.37	+0.65		
~	. 22	Right-pola	rized e-beam		
Coupling	A_x	A_z	A_e^{FB}		
X^L	-0.06	-0.43	-0.34		
κ^L	-0.01	-0.46	+0.64		
X^R	+0.16	+0.32	-0.17		
κ^R	+0.16	+0.37	+0.65		
K		Unpolari	zed e-beam		
Coupling	A_x	A_z	A_e^{FB}		
X^L	-0.12	-0.43	-0.24		
κ^L	-0.12	-0.46	+0.64		
X^R	+0.11	+0.32	-0.26		
κ^R	+0.08	+0.36	+0.65		

Limits on FCNC couplings

LHeC


FCC-he

$L=2 \; ab^{-1}$

Vector	Obtainable reach (in part of 10 ³)							
Coupling	at C.L. = 68%	95%	99%					
$X^L_{ut} \\ X^R_{ut} \\ X^L_{ct} \\ X^R_{ct} \\ X^R_{ct}$	$\in [-9.8, 9.7]$ $\in [-13.7, 13.6]$ $\in [-30.8, 31.1]$ $\in [-48.0, 47.3]$	$ \begin{array}{l} \in [-16.4, 16.4] \\ \in [-20.8, 20.9] \\ \in [-52.8, 52.7] \\ \in [-73.0, 72.7] \end{array} $	$ \begin{array}{l} \in [-20.0, 20.1] \\ \in [-24.4, 24.4] \\ \in [-65.7, 65.5] \\ \in [-85.9, 86.8] \end{array} $					
Tensor	Obt	ainable reach (Te	V ⁻¹)					
Coupling	at C.L. = 68%	95%	99%					
$rac{\kappa_{ut}^L/\Lambda}{\kappa_{ut}^R/\Lambda} \ \kappa_{ct}^L/\Lambda \ \kappa_{ct}^R/\Lambda$	$ \begin{array}{l} \in [-0.06, 0.06] \\ \in [-0.07, 0.07] \\ \in [-0.23, 0.23] \\ \in [-0.31, 0.31] \end{array} $	$ \begin{array}{l} \in [-0.10, 0.10] \\ \in [-0.12, 0.12] \\ \in [-0.40, 0.40] \\ \in [-0.57, 0.56] \end{array} $	$ \begin{array}{l} \in [-0.13, 0.13] \\ \in [-0.16, 0.15] \\ \in [-0.50, 0.50] \\ \in [-0.71, 0.72] \end{array} $					

Beam	Associated	Background	round Required		Reach of couplings for 95% CL. (TeV ⁻¹)				
polarization	quark	events, N_B	signal, $N_S(2\sigma)$	κ^L_{gqt}/Λ	κ^R_{gqt}/Λ	$\kappa^L_{\gamma qt}/\Lambda$	$\kappa^R_{\gamma qt}/\Lambda$		
Unpolarized	up	46	16	0.029	0.029	0.021	0.019		
Unpolarized -	charm	46	16	0.048	0.054	0.040	0.033		
(-80%)	up	34	14	0.028	0.027	0.022	0.017		
(-80%)	charm	- 54	14	0.043	0.037	0.036	0.025		
(+80%)	up	28	13	0.030	0.030	0.022	0.019		
(+60%)	charm	20	15	0.050	0.056	0.041	0.035		

Limits on FCNC couplings

04 Concluding Remarks

Concluding Remarks

- At the LHC, the top quark FCNC are studied mostly by searching for rare decay of the top quark, whereas at LHeC and FCC-he, we can probe these couplings influencing the production itself.
- Study of the vertex structure is very much favourable at the future ep collider for EW processes in particular
- Only t-channel, EW processes are possible at the production
- Scattered electron from the primary vertex gives extra handle to probe internal structure
- Top quark polarization can be utilized effectively

Our studies consolidate further the strong case of LHeC/FCC-he for better understanding of the top quark properties and FCNC couplings.

Concluding Remarks

- At the LHC, the top quark FCNC are studied mostly by searching for rare decay of the top quark, whereas at LHeC and FCC-he, we can probe these couplings influencing the production itself.
- Study of the vertex structure is very much favourable at the future ep collider for EW processes in particular
- Only t-channel, EW processes are possible at the production
- Scattered electron from the primary vertex gives extra handle to probe internal structure
- Top quark polarization can be itilized effectively

Our stores consolidate further the strong case of LHeC/FCC-he for better understanding of the top quark properties and FCNC couplings.