The top quark EW couplings after LHC Run 2

V. Miralles, M. Miralles López, M. Moreno Llácer, A. Peñuelas, 1,2 M. Perelló. 1 M. Vos 1

¹Universitat de València and CSIC, ²U.Mainz, Prisma

EPS-HEP

July 30th, 2021

Based on: [2107.13917] and [1907.10619]

Introduction

- Being the heaviest particle of the SM the top-quark is a good candidate for searching for new physics
- Its EW couplings are specially relevant in many extensions of the SM
- As the top-quark was not produced in LEP its EW sector could not be precisely measured until now
- The LHC data allows, finally, for precise measurements of this sector
- Here we present results of a global fit to top-quark EW couplings
- We used the most recent available data from the LHC (ATLAS and CMS), and also from LEP and Tevatron
- We include the QCD corrections at NLO on most of the observables used
- The fits have been performed using HEPfit [1910.14012]

Theoretical Framework

■ We adopt an EFT description to parametrize the deviations from the SM.

$$\mathscr{L}_{\mathsf{eff}} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{\Lambda^2} \sum_i C_i O_i + \mathscr{O}\left(\Lambda^{-4}\right).$$

- The Wilson coefficients can be later interpreted in terms of NP mediators.
- We include Λ^{-2} terms from the interference between the SM and D6 operators.
- We also include Λ^{-4} operators arising from squaring the D6 operators.
- The effects of D8 operators, contributing to the same Λ^{-4} order, are omitted.

$$\sigma = \sigma_{\text{SM}} + \underbrace{\frac{1}{\Lambda^2} \sum C_i O_i}_{\text{SM} \times \text{D6}} + \underbrace{\left(\frac{1}{\Lambda^2} \sum C_i O_i\right) \left(\frac{1}{\Lambda^2} \sum C_j O_j\right)}_{\text{D6} \times \text{D6}} + \underbrace{O(1/\Lambda^4)}_{\text{SM} \times \text{D8}}$$

- We only consider the EW two-fermion operators and ignore the imaginary parts.
- The four-fermion operators are ignored.

EW top-quark EFT Basis

Left and right-handed couplings of the t- and b-quark to the Z

$$\begin{array}{ll} O_{\phi Q}^{3} & \equiv \frac{1}{2} \left(\bar{q} \tau^{I} \gamma^{\mu} q \right) \left(\phi^{\dagger} i \overrightarrow{D}_{\mu}^{I} \phi \right) \\ O_{\phi Q}^{1} & \equiv \frac{1}{2} \left(\bar{q} \gamma^{\mu} q \right) \left(\phi^{\dagger} i \overrightarrow{D}_{\mu} \phi \right) \\ O_{\phi u} & \equiv \frac{1}{2} \left(\bar{u} \gamma^{\mu} u \right) \left(\phi^{\dagger} i \overrightarrow{D}_{\mu} \phi \right) \\ O_{\phi d} & \equiv \frac{1}{2} \left(\bar{d} \gamma^{\mu} d \right) \left(\phi^{\dagger} i \overrightarrow{D}_{\mu} \phi \right) \end{array}$$

EW dipole operators

$$\begin{array}{ll} O_{uW} & \equiv \left(\bar{q}\tau^I\sigma^{\mu\nu}u\right)\left(\varepsilon\phi^*W^I_{\mu\nu}\right) \\ O_{dW} & \equiv \left(\bar{q}\tau^I\sigma^{\mu\nu}d\right)\left(\phi W^I_{\mu\nu}\right) \\ O_{uB} & \equiv \left(\bar{q}\sigma^{\mu\nu}u\right)\left(\varepsilon\phi^*B_{\mu\nu}\right) \\ O_{dB} & \equiv \left(\bar{q}\sigma^{\mu\nu}d\right)\left(\phi B_{\mu\nu}\right) \end{array}$$

Chromo magnetic dipole operators

$$\begin{array}{ll} O_{uG} & \equiv \left(\bar{q}\sigma^{\mu\nu}T^Au\right)\left(\varepsilon\phi^*G^A_{\mu\nu}\right) \\ O_{dG} & \equiv \left(\bar{q}\sigma^{\mu\nu}T^Ad\right)\left(\phi G^A_{\mu\nu}\right) \end{array}$$

Top/Bottom yukawa

$$O_{u\varphi} \equiv (\bar{q}u) \left(\varepsilon \varphi^* \varphi^{\dagger} \varphi \right)$$

$$O_{d\varphi} \equiv (\bar{q}d) \left(\varphi \varphi^{\dagger} \varphi \right)$$

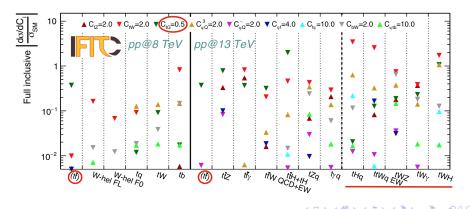
Charged current interaction

$$O_{\varphi ud} \equiv \frac{1}{2} \left(\bar{u} \gamma^{\mu} d \right) \left(\varphi^T \varepsilon i D_{\mu} \varphi \right)$$

■ Rotation of Warsaw basis following [1802.07237] (LHC Top WG)

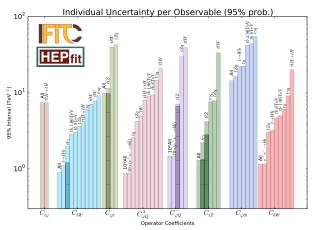
$$O^1_{\varphi Q}
ightarrow O^-_{\varphi O} = O^1_{\varphi Q} - O^3_{\varphi O};$$

$$O_{xB} \rightarrow O_{xZ} = -\sin\theta_W O_{xB} + \cos\theta_W O_{xW}$$

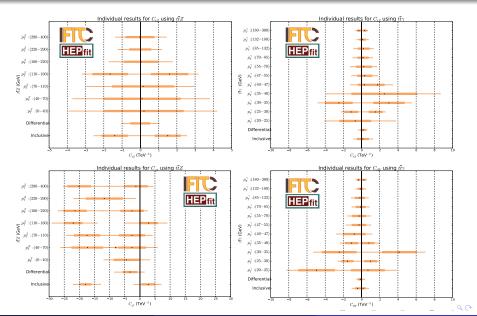

Methods & Data

- Dependence of the observables calculated at NLO in QCD with the Monte Carlo generator MG5_aMC@NLO [JHEP 07 (2014) 079]
- SMEFT@NLO [2008.11743] UFO model was used except for C_{bW} , $C_{\varphi tb}$, C_{bZ} and $C_{\varphi b}$ where the TEFT_EW [JHEP 05 (2016) 052] UFO model was used
- The fit is performed as a Bayesian statistical analysis of the model using the open source HEPfit [1910.14012]

Observable	\sqrt{s}	$\int \mathscr{L}$	Experiment
cross section	13 TeV	$140 \; { m fb}^{-1}$	ATLAS
cross section	13 TeV	$36 \; {\rm fb^{-1}}$	CMS
(differential) x-sec.	13 TeV	$140 \; { m fb}^{-1}$	ATLAS
(differential) x-sec.	13 TeV	$140 \; { m fb}^{-1}$	ATLAS
cross section	13 TeV	$140 \; { m fb}^{-1}$	CMS
cross section	13 TeV	$36 \; { m fb}^{-1}$	CMS
cross section	8 TeV	$20 \; { m fb}^{-1}$	ATLAS+CMS
cross section	8 TeV	$20 \; { m fb}^{-1}$	ATLAS+CMS
cross section	8 TeV	$20 \; { m fb}^{-1}$	ATLAS+CMS
F_0 , F_L	8 TeV	$20 \; { m fb}^{-1}$	ATLAS+CMS
cross section	1.96 TeV	$9.7 \; { m fb}^{-1}$	Tevatron
R_b , A_{FBLR}^{bb}	\sim 91 GeV	202.1 pb^{-1}	LEP
	cross section cross section (differential) x-sec. (differential) x-sec. cross section cross section cross section cross section cross section cross section F_0, F_L cross section	$\begin{array}{cccccc} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

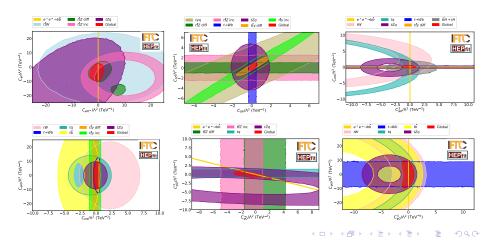

Sensitivity

- The observables and coefficients in red are not included
- The $pp \to t\bar{t}$ process is omitted in the fit in order to be consistent as it is used to reduce the dependence of $pp \to t\bar{t}X$ on Wilson coefficients that have not been included.

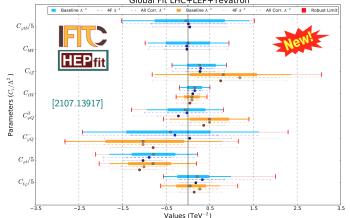


Results - Sensitivity Individual Constraints

- Good interplay between the parameters and chosen observables
- The differential cross sections (darker regions) provide the best constraints for some observables
- LEP still generates the best constraints in some cases



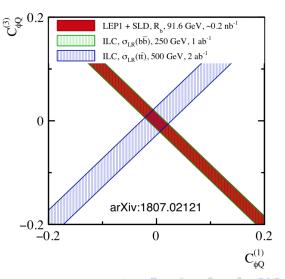
Results - Differential Cross Section Effect


Results - Complementarity Between Observables

- Very good complementarity between the observables
- The global fit marginalised limit is quite close to the intersection of individual fits
 - → The data set is diverse enough to avoid the existence of blind directions

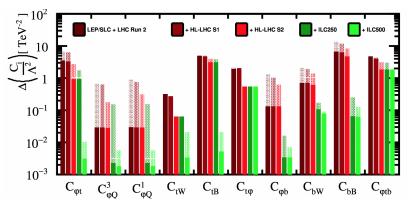
Results - Global Fit

- We are able to find constraints even with the linear (only Λ^{-2} terms) global fit and they are similar to the ones from the quadratic ($\Lambda^{-2} + \Lambda^{-4}$ terms) global fit for most cases
- We have checked the impact of adding estimated correlations between the observables as well as the effect of extending our basis with three more operators, the four-fermion operators C_{ut}^8 and C_{dt}^8 , and C_{tG}
- Robust Limit: Envelope found from combining the results from all the global fits



Future Colliders - Complementarity on e^+e^- colliders

Good complementarity between $b\bar{b}$ (LEP) and $t\bar{t}$ (future e^+e^- collider) if we reach $\sqrt{s}>2m_t$


$$\delta g_L^t = -(C_{\varphi Q}^1 - C_{\varphi Q}^3) m_t^2 / \Lambda^2$$

$$\delta g_L^b = -(C_{\varphi Q}^1 + C_{\varphi Q}^3) m_t^2/\Lambda^2$$

Future Colliders - Prospects for EW Top-Quark Couplings

- Results from [JHEP12(2019)098] show the extraordinary impact of adding the data from a e^+e^- collider working at 500 GeV \rightarrow It is crucial to go $\sqrt{s} > 2m_t$
- The LHC Run 2 data here refers to the data available in mid 2019, with the current data the errors are reduced around a factor two

Summary

- All the results are compatible with the SM with a 95% probability
- We find a reduction of the uncertainty of all the parameters of around a factor two with respect to our previous work [JHEP12(2019)098]
- \blacksquare LEP measurements provide tight bounds on several operators as the left-handed coupling $C_{\varpi O}^-$ and $C_{\varpi O}^{(3)}$
- The addition of the differential cross sections of $pp \to t\bar{t}Z$ and $pp \to t\bar{t}\gamma$ have an important effect on C_{tZ} and $C_{\varphi t}$
- Adding important correlations between the observables or even some more operators does not dramatically change the results
- The limits are robust even when we only consider linear terms, except for C_{bW} , $C_{\varpi tb}$ and C_{tZ}
- We find the most stringent bound on top EW couplings from an EFT including all relevant 2-fermions degrees of freedom (see [JHEP 04 (2019) 100], [JHEP 02 (2020) 131], [CMS-PAS-TOP-19-001])
- If we want to reduce the allowed ranges in some order of magnitudes it is crucial to build a e^+e^- collider working at $\sqrt{s} > 2m_t$

Thank you!