

Search for heavy neutral lepton production at the NA62 experiment

Chris Parkinson, for the NA62 collaboration

EPS-HEP 2021, Hamburg, Germany

- 1. Short introduction to Heavy Neutral Leptons and the NA62 experiment
- 2. Presentation of 2 NA62 papers, covering 4 world-leading results

Search for heavy neutral lepton production in *K*⁺ decays to positrons <u>Phys. Lett. B 807 (2020) 135599</u>

> Search for *K*⁺ decays to a muon and invisible particles <u>Phys. Lett. B 816 (2021) 136259</u>

Heavy Neutral Leptons

- Neutrinos are massless in the Standard Model (SM), contrary to the well-established experimental observation of neutrino oscillations
- Including right-handed neutrinos (HNL) can generate neutrino masses via see-saw mechanism
 - Can achieve "low scale" see-saw with O(100 MeV) HNL masses
 - One popular example: Neutrino Minimal Standard Model (ν MSM) [1]
- HNL produced in $K^+ \rightarrow \ell^+ N$ ($\ell = e, \mu$) decays, with similar experimental signature to the SM decay $K^+ \rightarrow \ell^+ \nu$
 - Assumes HNL lifetime greater than 50ns i.e. "detector stable"
- The branching fraction is:

 $B(K^+ \to \ell^+ N) \sim B(K^+ \to \ell^+ \nu) \cdot \rho_\ell(m_N) \cdot |U_{\ell 4}|^2$ where $\rho_\ell(m_N)$ is an O(1) kinematic factor [2], and $|U_{\ell 4}|^2$ is the squared neutrino mixing parameter $\begin{array}{c} 4.5 \\ (h + H + 3.5 \\ +$

The NA62 experiment

NA62 is a kaon physics experiment based at the CERN North Area (NA) It uses 400 GeV/c protons extracted from the CERN super-proton synchrotron (SPS) to perform decay-in-flight measurements of (ultra) rare kaon decays

The NA62 detector

- Proton-target interactions + achromatic selector forms secondary hadron beam with $p \approx 75 \; GeV/c$
 - Nominally there are 750MHz of particles in the secondary beam; 6% are K^+ (45MHz)
- Measurement of all beam particles by kaon tagger KTAG and beam-particle tracker GTK
- About 15% of K^+ decay within the ~ 75m vacuum decay region, which defines the experiments fiducial volume
- Measurement of K^+ decay products by the **STRAW** tracker and **CHOD** detectors
- Particle identification by the RICH, the LKr and MUV calorimeters, and the MUV3 detector
- Hermetic photon veto provided by the LAV, LKr, IRC, SAC photon detectors

Event Selection

- Exploit the precise tracking and powerful PID to reconstruct both the K^+ and e^+ , then match the two tracks together
- Exploit the *O*(100ps) time resolution to veto any other in-time activity
- $N_{SM} = 3.495 \times 10^6 K^+ \rightarrow e^+ \nu$ candidates
- $N_K = (3.52 \pm 0.02) \times 10^{12}$ (analysis-dependent sample size)
- $K^+ \rightarrow eN$ decays appear as a sharp bump in the positive m_{miss}^2 sideband of candidate $K^+ \rightarrow e^+ \nu$ decays

6

Limit-setting procedure

- Scan across m_{miss}^2 in steps defined by the $O(1 {\rm MeV}/c^2)$ mass resolution on m_N
- Count expected and observed events in a $\pm 1.5\sigma$ window at each step
- Expected number of events estimated using 2nd order polynomial fits to the data
- Close to kinetmatic edge of π^+ decays (356 382 MeV/ c^2) use stricter selection to shift π^+ backgrounds to higher m_{miss}^2
 - Less stringent limits in this region!
- Set limits on the number of $K^+ \rightarrow eN$ decays using the CLs method

Search for heavy neutral lepton production in K^+ decays to positrons

Search for K^+ decays to a muon and invisible particles

10⁹

- Similar event selection techniques applied to select $K^+ \rightarrow \mu^+ \nu$ candidates
- π^+ decays negligible in this case
- Simulation of beam-particle pileup and GTK inefficiency causes deficit of simulated events in non-gaussian tails of m_{miss}^2
 - Assume tail is symmetric around 0; assign a 100% systematic uncertainty
- $N_{SM} = 2.19 \times 10^9 K^+ \rightarrow \mu^+ \nu$ candidates
- $N_K = (1.14 \pm 0.02) \times 10^{10}$
 - N_K smaller than in the electron mode due ~ 400 trigger downscale
- Similar limit-setting procedure as earlier, but each step has a fixed size

Data

9

Search for K^+ decays to a muon and invisible particles 10

Search for K^+ decays to a muon and invisible particles 11

Scalar X model

• While studying the $K^+ \rightarrow \mu^+ \nu$ missing-mass spectrum, also check for $K^+ \rightarrow \mu^+ \nu X$ and $K^+ \rightarrow \mu^+ \nu \nu \nu$ decays

Summary

12

- Four recent results from NA62 were presented:
- 1. Set limits on $|U_{e4}|^2$, at the level of 10^{-9} in the $144 462 \text{ MeV}/c^2$ mass range
 - Worlds best limits across this mass range
 - Region favoured by Big Bang Nucleosynthesis excluded up to about $340 \text{ MeV}/c^2$
- 2. Set limits on $|U_{\mu4}|^2$, at the level of 10^{-8} in the 200 384 MeV/ c^2 mass range
 - Worlds best limits above $\sim 300 \text{MeV}/c^2$
- 3. Worlds first limits on the $K^+ \rightarrow \mu^+ \nu X$ decay, with X being a scalar or vector mediator decaying to an invisible final state with X masses in the $10 370 \text{ MeV}/c^2$ mass range
- 4. Worlds best limit of 1.0×10^{-6} on the $K^+ \rightarrow \mu^+ \nu \nu \nu$ branching fraction
- This month, NA62 started a new data-taking period covering the full extent of LHC run 3
 - Expectation to run at 30% higher beam intensity and collect $O(10^{13}) K^+$ decays
 - Expect to collect 10¹⁸ protons-on-target in "dump mode" to further probe Heavy Neutral Lepton parameters, with new muon tagger to reduce muon backgrounds from the target

References

- 1. T. Asaka, M. Shaposhnikov, Phys. Lett. B 620 (2005) 17
- 2. R. Shrock, Phys. Lett. B 96 (1980) 159; Phys. Rev. D 24 (1981) 1232

Backup

Search for heavy neutral lepton production at the NA62 experiment, Chris Parkinson, EPS-HEP 2021

17