Probing the CP structure of the top quark Yukawa coupling: Loop sensitivity vs. on-shell sensitivity

- **Ren-Qi Pan Zhejiang University** renqi.pan@cern.ch
- in collaboration with Till Martini, Markus Schulze, Meng Xiao
 - Based on arXiv: 2104.04277

Motivation

Why CP property matters?

- Baryon asymmetry of the universe requires CP violation
- CKM matrix is the only source of CP violation in SM , but can't explain the baryon asymmetry
- Additional CP violation needed to explain baryon asymmetry
- CP violation might exist in Higgs sector in some new physics models: 2HDM, SUSY

Why Higgs-top interaction is interesting?

- Heaviest mass among fermions
- Interacts with the Higgs boson with the largest Yukawa coupling
- Lots of top quarks produced at LHC

Htt Effective Lagrangian

$$\mathscr{L}(Htt) = -\frac{m_t}{v} \bar{\psi}_t \left(\kappa + \mathrm{i} \tilde{\kappa} \gamma_5\right) \psi_t H$$

* κ term: CP-even, $\tilde{\kappa}$ term: CP-odd; In SM: $\kappa = 1$, $\tilde{\kappa} = 0$ • If κ , $\tilde{\kappa}$ both are non-zero, implies CP violation * κ, $\tilde{\kappa}$ correspond to $C_{33}^{u\varphi}$ in SMEFT: $\kappa = 1 - \frac{v}{\sqrt{2}m_t} \frac{v^2}{\Lambda^2} \operatorname{Re}\left[C_{tt}^{u\varphi}\right], \tilde{\kappa} = -\frac{v}{\sqrt{2}m_t} \frac{v^2}{\Lambda^2} \operatorname{Im}\left[C_{tt}^{u\varphi}\right]$ $\text{In SMEFT Warsaw basis: } Q_{33}^{u\varphi} = \left(\varphi^{\dagger}\varphi\right)\left(\bar{q}_{3L}^{\prime}t_{\mathrm{R}}^{\prime}\tilde{\varphi}\right) \Leftrightarrow C_{33}^{u\varphi}$

Current Constraints from LHC

ttH+tHq in diphoton: Phys. Rev. Lett. 125.061801

Fractional cross section of CP-odd comp

Pure CP-odd scenario is excluded at more
Leaving large room of parameter space

Ren-Qi Pan(ZJU)

ttH+tHq in 4 leptons and diphton: arXiv:2104.12152

ponent:
$$f_{CP} = \frac{|\tilde{\kappa}|^2}{|\kappa|^2 + |\tilde{\kappa}|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}}{\kappa}\right)$$

there than 3 σ

July 27th 2021

ttAndtHWProduction

New approaches to access CP property: • $t\bar{t}$ production with electroweak loops tHW production

Top Quark Paris Production

Theoretical predications of $t\bar{t}$ production reach an accuracy at a few percent level:

- Mistlberger]

LHC measured differential $t\bar{t}$ production cross sections and unfolded to particle level

Ren-Qi Pan(ZJU)

July 27th 2021

Top Quark Pairs Production

Typical Feynman diagrams of NLO EW Corrections

Ren-Qi Pan(ZJU)

$t\bar{t}$ production at leading order

NLO EW Corrections

+ Interference of diagrams with Higgs loops and Born level either $\propto \kappa^2$ or $\tilde{\kappa}^2$ Loop diagrams involving the Higgs boson are IR finite but contain UV poles; renormalization necessary within SMEFT One-loop amplitude is UV finite after renormalization • EW correction factor: $\delta_{wk} = \frac{d\sigma_{wk}^{NLO} - d\sigma^{LO}}{d\sigma^{LO}}$, $\bullet \delta_{wk}$ can be used to reweight distributions to include EW effects

Loop sensitivity on CP Property in tt production

Ren-Qi Pan(ZJU)

distributions of $\Delta y_{t\bar{t}}$ and $M_{t\bar{t}}$ sensitive to CP structure of top Yukawa coupling

July 27th 2021

Loop sensitivity on CP Property in tt production

- Extract CP structure in ($\Delta y_{t\bar{t}}$, $M_{t\bar{t}}$) 2-D distribution
- **Events simulated at MadGraph and interfaced to Pythia8**
- simulate detector effects through Delphes3
- **NLO EW effects included through reweighting** semileptonic channel; Main backgrounds: single top, V+jets, QCD multijets

Relative EW corrections when $\kappa = 1$ and $\tilde{\kappa} = 0$

Sensitivity of tt Production

Sensitivity of $t\bar{t}$ production at 300 fb⁻¹

tHW Production

- Htt induced diagram interferes with HWW induced diagram
- Destructive interference in the SM, leading to small cross section
- If the relative sign of Htt and HWW flips, cross section would increase obviously
- $\sigma(\kappa, \tilde{\kappa})_{tHW} = \sigma_{SM}^{tHW}(2.82 |\kappa|^2 + 2.08 |\tilde{\kappa}|^2 3.87\kappa + 2.05)$
- HWW coupling is set same as the value in the SM

Two typical Feynman diagrams of the tHW

Matrix Element Approach

$$\mathcal{D}_{0^{-}}(\Omega) = \frac{\mathcal{P}_{0^{-}}(\Omega)}{\mathcal{P}_{0_{-}}(\Omega) + \mathcal{P}_{0^{-}}(\Omega)}, \quad \mathcal{D}_{bkg} = \frac{\mathcal{P}_{sig}(\vec{\Omega})}{\mathcal{P}_{sig}(\vec{\Omega}) + \mathcal{P}_{bkg}(\vec{\Omega})}, \quad \mathcal{D}_{int}(\Omega) = \frac{\mathcal{P}_{int}(\Omega)}{2\sqrt{\mathcal{P}_{sig}(\Omega)\mathcal{P}_{alt}(\Omega)}}$$

- $\mathcal{D}_{0^{-}}(\Omega)$: distinguish CP-odd from CP-even
- $\mathcal{D}_{bkg}(\Omega)$: separate signal from background
- $\mathcal{D}_{int}(\Omega)$: sensitive to interference term

13

Results: 2D Likelihood Scan of κ and $\tilde{\kappa}$

Results: Likelihood Scan of f_{CP}

Fractional contribution of CP-odd component: $f_{CP} = \frac{|\tilde{\kappa}|^2}{|\kappa|^2 + |\tilde{\kappa}|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}}{\kappa}\right)$ $\mathscr{L} = 300 \text{fb}^{-1}$ tHq $\mathscr{L} = 3000 \text{fb}^{-1}$ - UΣ2- 10² — ttH —— tHW ---- tHW(no ttH) 5σ 10 5 95% CL 95% CL 68% CL 68% CL -0.5 0.5 -0.5 0.5 СР

Ren-Qi Pan(ZJU)

ttH and tHq results cited from [arXiv: 1606.03107]

- Probing CP structure of top Yukawa coupling through EW loops in $t\bar{t}$ production **Analyze tHW production using matrix element approach**
- Compare constraints on CP structure from EW loops in $t\bar{t}$ production with onshell Higgs production(ttH, tHq, tHW)
- Loop sensitivity in $t\bar{t}$ production and on-shell sensitivity in ttH and tH provide complementary handles over a wide range of parameter space
- *tt* and tHW production with anomalous couplings publicly available as add-on to MCFM or via JHU Generator respectively

