Indirect \mathcal{CP} probes of the Higgs-top-quark interaction: current LHC constraints and future opportunities

Henning Bahl

in collaboration with

P. Bechtle, S. Heinemeyer, J. Katzy, T. Klingl, K. Peters,
M. Saimpert, T. Stefaniak, G. Weiglein

DESY, Hamburg

EPS-HEP 2021

27.7.2021. online

Introduction

Global fit

Future sensitivity to tH production

Constraining the \mathcal{CP} nature of the Higgs boson — motivation

- ightharpoonup New sources of ${\cal CP}$ violation are necessary to explain the baryon asymmetry of the Universe,
- \blacktriangleright one possibility: \mathcal{CP} violation in the Higgs sector with Higgs boson being \mathcal{CP} -admixed state,
- ▶ most BSM theories predict largest \mathcal{CP} violation in Higgs–fermion–fermion couplings \rightarrow focus on Higgs–top-quark coupling.
- ightharpoonup CP violation in the Higgs sector can be constrained by
 - demanding successful explanation of the baryon asymmetry,
 - electric dipole measurements,
 - collider constraints.

Constraining the \mathcal{CP} nature of the Higgs boson — motivation

- ightharpoonup New sources of ${\cal CP}$ violation are necessary to explain the baryon asymmetry of the Universe,
- \triangleright one possibility: \mathcal{CP} violation in the Higgs sector with Higgs boson being \mathcal{CP} -admixed state,
- most BSM theories predict largest \mathcal{CP} violation in Higgs–fermion–fermion couplings \rightarrow focus on Higgs–top-quark coupling.
- \triangleright \mathcal{CP} violation in the Higgs sector can be constrained by
 - demanding successful explanation of the baryon asymmetry,
 - electric dipole measurements,
 - collider constraints.

Goal of present study

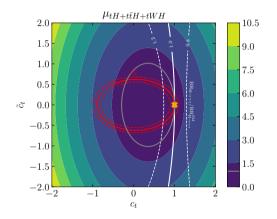
Assess LHC constraints on \mathcal{CP} -violating Higgs–top-quark interaction and discuss future opportunities.

Effective model

Intro

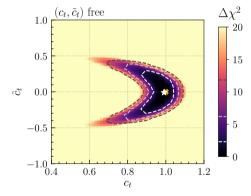
▶ Top-Yukawa Lagrangian (generated by $1/\Lambda^2(\Phi^{\dagger}\Phi)Q_L\tilde{\Phi}t_R$ operator),

$$\mathcal{L}_{\mathsf{yuk}} = -y_t^{\mathsf{SM}} \bar{t} \left(c_t + i \gamma_5 \tilde{c}_t \right) t H.$$

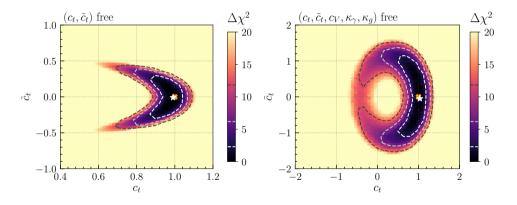

- modified top-Yukawa coupling affects:
 - top-associated Higgs production (ttH, tH, tWH)
 - Z-associated Higgs production,
 - gluon fusion,
 - $H \rightarrow \gamma \gamma$,
- additional free parameters
 - $c_V \rightarrow$ rescaling HVV couplings (tH and tWH production depend on c_V),
 - $\kappa_{g} \rightarrow$ rescaling $gg \rightarrow H$ ("removing" gluon fusion constraints),
 - $\kappa_{\gamma}
 ightarrow$ rescaling $H
 ightarrow \gamma \gamma$ ("removing" $H
 ightarrow \gamma \gamma$ constraints),
- \triangleright did not include \mathcal{CP} -odd HVV operators,
- ightharpoonup SM: $c_t = 1$, $\tilde{c}_t = 0$, $c_V = \kappa_g = \kappa_{\gamma} = 1$.
- \rightarrow Assessed constraints on this model by performing a global fit.

Fit setup

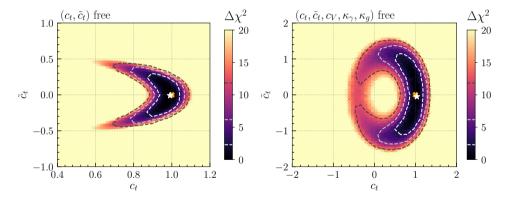
- Experimental input:
 - all relevant Higgs measurements:
 - Higgs signal-strength measurements.
 - \triangleright ZH STXS measurements (p_T shape),
 - ightharpoonup did not include dedicated experimental top-Yukawa \mathcal{CP} analyses (difficult to reinterpret in other model).
 - if available, included all uncertainty correlations,
- theory input: derived fit formulas for all observables using MadGraph,
- considered four models:
 - 1. (c_t, \tilde{c}_t) free $(\kappa_g, \kappa_{\gamma})$ calculated as function of c_t and \tilde{c}_t
 - 2. (c_t, \tilde{c}_t, c_V) free.
 - 3. $(c_t, \tilde{c}_t, c_V, \kappa_{\gamma})$ free,
 - 4. $(c_t, \tilde{c}_t, c_V, \kappa_{\gamma}, \kappa_{\sigma})$ free.
- \triangleright χ^2 fit performed using HiggsSignals.


Fit setup

- Experimental input:
 - all relevant Higgs measurements:
 - Higgs signal-strength measurements.
 - \triangleright ZH STXS measurements (p_T shape),
 - ightharpoonup did not include dedicated experimental top-Yukawa \mathcal{CP} analyses (difficult to reinterpret in other model).
 - if available, included all uncertainty correlations,
- theory input: derived fit formulas for all observables using MadGraph,
- considered four models:
 - 1. (c_t, \tilde{c}_t) free $(\kappa_{\varepsilon}, \kappa_{\gamma})$ calculated as function of c_t and \tilde{c}_t
 - 2. (c_t, \tilde{c}_t, c_V) free.
 - 3. $(c_t, \tilde{c}_t, c_V, \kappa_{\gamma})$ free,
 - 4. $(c_t, \tilde{c}_t, c_V, \kappa_{\gamma}, \kappa_{\sigma})$ free.
- \triangleright χ^2 fit performed using HiggsSignals.



$$\mu_{tH+t\bar{t}H+tWH} = \sigma(t\bar{t}H+tH+tWH)/\sigma_{SM}(t\bar{t}H+tH+tWH),$$
 $c_V = 1$

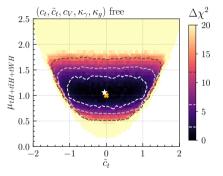

- ightharpoonup red: κ_g^2 ,
- white: $BR(H \to \gamma \gamma)/BR_{SM}(H \to \gamma \gamma)$,
- ightharpoonup $t\bar{t}H$ and tH difficult to disentangle,
- normally combination of both measured.

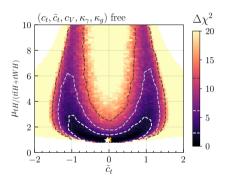
Fit results

Fit results

 \rightarrow still significant \mathcal{CP} -odd coupling allowed in 5D model.

How to improve constraints in the future?


- ► Include more kinematic information, see ATLAS and CMS studies [2003.10866,2004.04545]
 → uses all information but comparably high model dependence.
- \triangleright construct \mathcal{CP} -odd observables
 - \rightarrow easy to interpret but experimentally difficult for top-associated Higgs production,
- indirect constraints
 - ightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- ⇒ Should pursue all approaches to exploit complementarity!


How to improve constraints in the future?

- ▶ Include more kinematic information, see ATLAS and CMS studies [2003.10866,2004.04545]
 - ightarrow uses all information but comparably high model dependence,
- \triangleright construct \mathcal{CP} -odd observables
 - \rightarrow easy to interpret but experimentally difficult for top-associated Higgs production,
- indirect constraints
 - ightarrow comparably low model dep., but deviations could also be caused by other BSM physics.
- ⇒ Should pursue all approaches to exploit complementarity!

Future potential of inclusive measurements

▶ Most promising candidate: improved tH, $t\bar{t}H$ measurements.

 $[\mu_{tH/(t\bar{t}H+tWH)} = (\sigma(tH)/\sigma(t\bar{t}H+tWH))/(\sigma_{SM}(tH)/\sigma_{SM}(t\bar{t}H+tWH))]$

- Measuring $tH + t\bar{t}H + tWH$ has low discrimination power regarding \tilde{c}_t .
- ▶ Need to disentangle tH and $t\bar{t}H + tWH$!

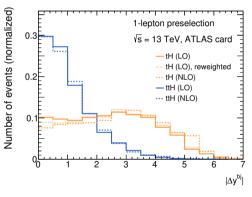
However, still no sensitivity to sign of \tilde{c}_t ...

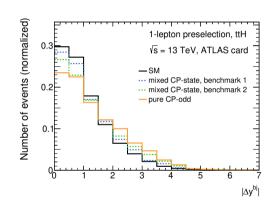
Measuring tH production with $H o \gamma \gamma$

Goal

Measure tH cross section in a model-independent way (i.e. without assumption on Higgs \mathcal{CP} character).

▶ Present study: focus on $H \rightarrow \gamma \gamma$ but other decay channels could also be included.

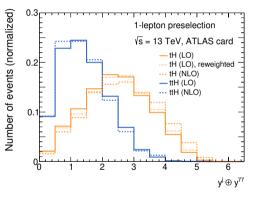

Strategy: Split events into

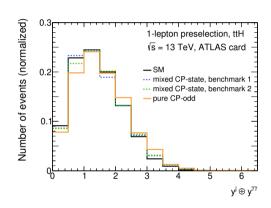

- ▶ 1-lepton category: $t\bar{t}H$, tH, tWH contribute
 - \rightarrow optimize for high tH fraction,
- ightharpoonup 2-lepton category: $t\bar{t}H$, tWH contribute
 - \rightarrow independent measurement of $t\bar{t}H + tWH$ production.

Event simulation using MadGraph + Pythia + Delphes (LO + N_{jet} -reweighting).

Enhancing the *tH* fraction

▶ $N_{jet} = 2$, $N_{bjet} = 1$, $m_T^{top} < 200$ GeV



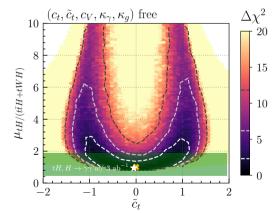


- ightharpoonup jet-rapidity difference $|\Delta y^{bj}| > 2$
 - \rightarrow variation of $t\bar{t}H$ selection efficiency by $\sim 40\%$ in 1-lepton category for different \mathcal{CP} hypotheses. \nearrow

Enhancing the *tH* fraction

▶
$$N_{jet} = 2$$
, $N_{bjet} = 1$, $m_T^{top} < 200$ GeV

- new observable $y^j \oplus y^{\gamma\gamma} = \sqrt{(y^j)^2 + (y^{\gamma\gamma})^2} > 2$
 - \rightarrow variation of $t\bar{t}H$ selection efficiency by $\lesssim 2\%$ in 1-lepton category for different \mathcal{CP} hypotheses. \checkmark


HL-LHC projection

Expected upper limit

With $3ab^{-1}$, $\mu_{tH} < 2.21$ at 95% CL assuming SM data.

- ▶ 5x stronger than current strongest limit, [2004.04545]
- also stronger than most optimistic projected HL-LHC limit.

[1902.00134,10.23731/CYRM-2019-007]

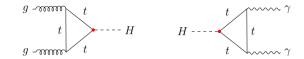
Conclusions

Initial question

How well can one constrain a \mathcal{CP} -odd component of the top-Yukawa coupling using current measurements?

- \rightarrow global fit to all relevant LHC data:
 - Used effective Lagrangian with generalized top-Yukawa interaction,
 - included total and differential cross-section measurements,
 - fit results:
 - strong constraints from $gg \to H$ and $H \to \gamma \gamma$,
 - sizable \mathcal{CP} -odd coupling allowed if κ_g and κ_γ are varied independently,
 - \triangleright future disentanglement of ttH and tH could further constrain a \mathcal{CP} -odd coupling,
 - ightharpoonup need to ensure that measurements do not rely on assumption on Higgs ${\cal CP}$ character.

Conclusions

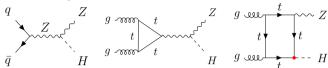

Initial question

How well can one constrain a \mathcal{CP} -odd component of the top-Yukawa coupling using current measurements?

- \rightarrow global fit to all relevant LHC data:
 - Used effective Lagrangian with generalized top-Yukawa interaction,
 - included total and differential cross-section measurements,
 - fit results:
 - strong constraints from $gg \to H$ and $H \to \gamma \gamma$,
 - sizable $\mathcal{CP}\text{-}\mathrm{odd}$ coupling allowed if $\kappa_{\mathbf{g}}$ and κ_{γ} are varied independently,
 - \triangleright future disentanglement of ttH and tH could further constrain a \mathcal{CP} -odd coupling,
 - ightharpoonup need to ensure that measurements do not rely on assumption on Higgs \mathcal{CP} character.

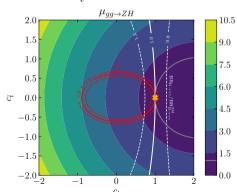
Thanks for your attention!

Relevant processes: $gg \rightarrow H \& H \rightarrow \gamma \gamma$

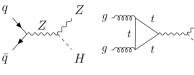

- top-Yukawa influences
 - $gg \rightarrow H$ signal strength

$$\kappa_{\rm g}^2 \equiv rac{\sigma_{{
m gg}
ightarrow H}}{\sigma_{{
m gg}
ightarrow H}^{
m SM}} igg|_{M_t
ightarrow \infty} = c_{
m t}^2 + rac{9}{4} ilde{c}_{
m t}^2 + \ldots,$$

calculate κ_g either in terms of c_t and \tilde{c}_t or treat it as free parameter (\rightarrow undiscovered colored BSM particles),


- kinematic shapes not sensitive yet, (future potential: $\Delta \phi_{ii}$ in $gg \rightarrow H + 2j$)
- ▶ similarly $H \rightarrow \gamma \gamma$.

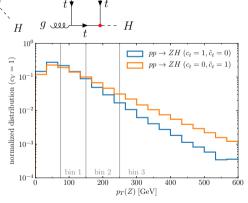
Relevant processes: ZH production



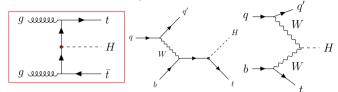
Total rate:

- ightharpoonup Experimental measurement: $pp \rightarrow ZH$,
- $ightharpoonup \sigma_{q\bar{q} o ZH}^{SM}pprox 6\sigma_{gg o ZH}^{SM}$,
- ▶ but $\sigma_{gg \to ZH}$ can be significantly enhanced.

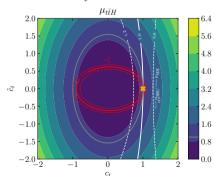
Relevant processes: ZH production

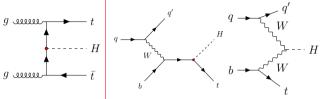


Total rate:

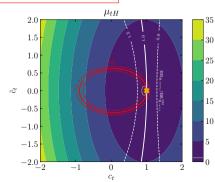

- ightharpoonup Experimental measurement: $pp \rightarrow ZH$,
- $ightharpoonup \sigma_{q\bar{q}\to ZH}^{\rm SM} pprox 6\sigma_{gg\to ZH}^{\rm SM}$
- ▶ but $\sigma_{gg \to ZH}$ can be significantly enhanced.

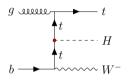
Kinematic shapes:

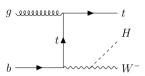

- \triangleright Z p_T -shape sensitive to Higgs \mathcal{CP} -properties,
- use STXS bins as additional input.


Relevant processes: *ttH* and *tH* production

- $ightharpoonup \sigma_{t\bar{t}H}^{SM} \approx 7\sigma_{tH}^{SM}$,
- but \mathcal{CP} -odd top-Yukawa coupling can enhance σ_{tH} .


Relevant processes: ttH and tH production


- $ightharpoonup \sigma_{t\bar{t}H}^{SM} \approx 7\sigma_{tH}^{SM}$,
- but \mathcal{CP} -odd top-Yukawa coupling can enhance σ_{tH} .


Kinematic shape:

- ► Higgs p_T shape measured in STXS framework, [ATLAS-CONF-2020-026]
- applicability questionable.

tWH production

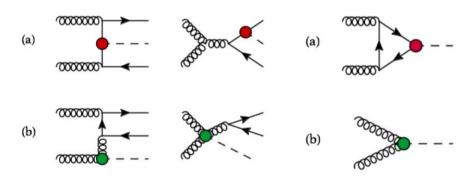
- ightharpoonup interferes with $t\bar{t}H$ production,
- $ightharpoonup \sigma_{t\bar{t}H}^{SM} \approx 34\sigma_{tWH}^{SM}$
- ▶ but non-negligible contribution in \mathcal{CP} -odd case: $\sigma^{\mathcal{CP}\text{-odd}}_{t\bar{t}H} \approx 3.5\sigma^{\mathcal{CP}\text{-odd}}_{tWH}$,
- ightarrow fully taken into account in numerical analysis.

Reasons for not including ATLAS and CMS studies

Disclaimer

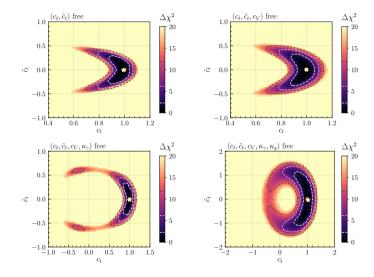
Sorry if we misunderstood anything!

CMS study:

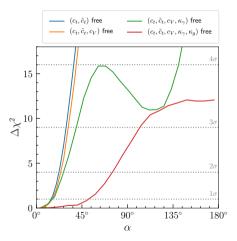

[2003.10866, "Measurements of $t\bar{t}H$ Production and the CP Structure of the Yukawa Interaction ..."]

- all Higgs production modes (apart from top-associated Higgs production) are constrained to their SM predictions $\rightarrow c_V = \kappa_g = \kappa_\gamma = 1$.
- no two-dimensional likelihood given.
- ATLAS study:

```
[2004.04545, "CP Properties of Higgs Boson Interactions with Top Quarks ..."]
```

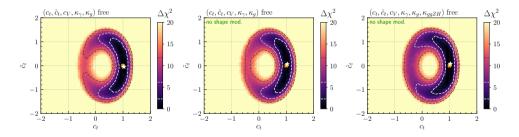

- two setups:
 - 1. κ_g constrained by other measurements (ggH) excluding $t\bar{t}H$ and tH, but events generated at NLO
 - → top-associated Higgs production and gluon fusion cannot be regarded as independent,
 - 2. κ_g and κ_{γ} calculated as function of c_t and \tilde{c}_t .
- $c_V = 1$.

Correlation between ggH and $t\bar{t}H$ at NLO _{e.g. [1607.05330]}



▶ SMEFT operators: $O_{t\varphi}$, $O_{\varphi G}$

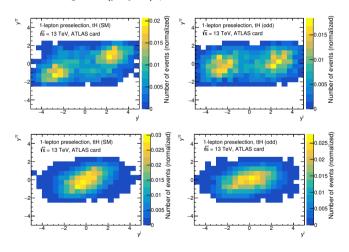
Fit results


Interpretation in terms of mixing angle

Influence of ZH observables

Assess influence of specific observables by successively excluding

- ZH STXS measurements ("no shape mod."),
- ▶ ZH total rate measurements (" κ_{ggZH} free").


- top-associated Higgs production most important,
- but also ZH production has a non-negligible impact.

Cutflow

Observable / Selection	1-lepton selection	2-lepton selection
N_{γ}	≥ 2	
$m_{\gamma\gamma}$	$[105-160]~{ m GeV}$	
$(p_{T,1}^{\gamma},p_{T,2}^{\gamma})$	$\geq (35, 25) \text{ GeV}$	
$(p_{T,1}^{\gamma}/m_{\gamma\gamma}, p_{T,2}^{\gamma}/m_{\gamma\gamma})$	$\geq (0.35, 0.25)$	
N_{bjet}	≥ 1	
p_T^{miss}	$\geq 25~{ m GeV}$	
N_{ℓ}	exactly 1	exactly 2 with opposite sign
$m_{\ell\ell}$	_	[80, 100] GeV vetoed if same flavour
N_{jet}	exactly 2	_
N_{bjet}	exactly 1	(-)
m_T^{top}	< 200 GeV	(=)
$y^j \oplus y^{\gamma\gamma}$	> 2	[-]

Motivation for $y^j \oplus y^{\gamma\gamma}$

 $y^j \oplus y^{\gamma\gamma} \simeq \text{distance from origin in } (y^j, y^{\gamma\gamma}) \text{ plane.}$

