Precision from Diboson Processes at FCC-hh.

Based on arxiv:2004.06122 and arxiv:2011.13941

in collaboration with: F. Bishara, S. De Curtis, L. Delle Rose, C. Grojean, M. Montull, G. Panico and A. N. Rossia

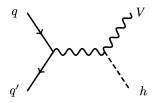
Philipp Englert

EPS-HEP2021

Hamburg, 28 July 2021

Motivation

- Precision physics @ hadron colliders: difficult
- exceptions: e.g. Drell-Yan, diboson production channels
- heavy new physics tends to grow with energy
- cleanliness of leptonic decay channels of the V-bosons
- here: $pp \rightarrow Vh$; tree level SM diagram:



Theory

The framework

• SMEFT: parametrize heavy new physics in terms of effective operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \mathcal{L}^{(d)}$$
 with $\mathcal{L}^{(d)} \equiv \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$

• leading contributions (dim 6) to energy growth in *Wh*, with the constraint of MFV in the Warsaw basis (see e.g. [1712.01310]):

$$\begin{split} \mathcal{O}_{\varphi q}^{(3)} &= \left(\bar{Q}_L \sigma^a \gamma^\mu Q_L \right) \left(i H^{\dagger} \sigma^a \stackrel{\leftrightarrow}{D}_{\mu} H \right) \\ \mathcal{O}_{\varphi W} &= H^{\dagger} H W^{a,\mu\nu} W^a_{\mu\nu} \\ \mathcal{O}_{\varphi \widetilde{W}} &= H^{\dagger} H W^{a,\mu\nu} \widetilde{W}^a_{\mu\nu} \end{split}$$

(-1)

Theory

The framework

SMEFT: parametrize heavy new physics in terms of effective operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \mathcal{L}^{(d)}$$
 with $\mathcal{L}^{(d)} \equiv \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$

• leading contributions (dim 6) to energy growth in *Zh*, with the constraint of MFV in the Warsaw basis (see e.g. [1712.01310]):

$$\begin{split} \mathcal{O}_{\varphi q}^{(1)} &= \left(\overline{Q}_L \gamma^\mu Q_L \right) \left(i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right), \qquad \mathcal{O}_{\varphi u} = \left(\overline{u}_R \gamma^\mu u_R \right) \left(i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right) \\ \mathcal{O}_{\varphi q}^{(3)} &= \left(\overline{Q}_L \sigma^a \gamma^\mu Q_L \right) \left(i H^{\dagger} \sigma^a \overset{\leftrightarrow}{D}_{\mu} \right), \quad \mathcal{O}_{\varphi d} = \left(\overline{d}_R \gamma^\mu d_R \right) \left(i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right) \end{split}$$

< n

How to best exploit the energy growth of heavy NP effects?

• squared matrix element:

$$\mathcal{M}^{2} = |\mathcal{M}_{\mathsf{SM}}|^{2} + \underbrace{2\mathsf{Re}\mathcal{M}_{\mathsf{SM}}\mathcal{M}_{\mathsf{BSM}}^{*}}_{\propto \frac{c}{\Lambda^{2}}} + \underbrace{|\mathcal{M}_{\mathsf{BSM}}|^{2}}_{\propto \frac{c^{2}}{\Lambda^{4}}}$$

- optimize sensitivity to interference terms because:
 - lower power of $1/\Lambda \rightarrow {\rm Wilson-coefficient/energy}$ does not need to be so large
 - if $|\mathcal{M}_{BSM}|^2$ contribute sizeably: dim-8 operators could be of relevance \rightarrow more model dependent results if neglected

The story of Wh

Let's analyze the HE-behaviour in the interference terms!

- Naive expectation: Bin in $\sqrt{\hat{s}},$ observe the energy growth and enjoy life

• Reality:

$$\begin{split} |\mathcal{M}_{\mathsf{SM}}|^2 &\sim \sin^2\theta & \operatorname{Re} \,\mathcal{M}_{\mathsf{SM}} \mathcal{M}_{\varphi \mathrm{W}}^* \sim \frac{\mathcal{M}_W^2}{\Lambda^2} \\ \operatorname{Re} \,\mathcal{M}_{\mathsf{SM}} \,\mathcal{M}_{\varphi q}^{(3)\,*} &\sim \frac{\hat{s}}{\Lambda^2} \sin^2\theta & \operatorname{Re} \,\mathcal{M}_{\mathsf{SM}} \,\mathcal{M}_{\varphi \widetilde{\mathrm{W}}}^* = 0 \end{split}$$

 \to analysis differential in $\sqrt{\hat{s}}$ could provide good sensitivity to $\mathcal{O}_{\varphi q}^{(3)}$ but not to the other two operators

0

Why?

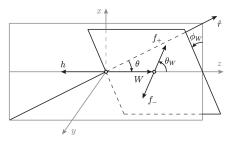
If we integrate over the W decay angles ...

- Re $\mathcal{M}_{SM} \, \mathcal{M}^*_{\varphi \widetilde{W}} = 0$ because $\mathcal{O}_{\varphi \widetilde{W}}$ is CP-odd
- Re $\mathcal{M}_{SM} \mathcal{M}^*_{\varphi_W}$: only amplitudes with the same W-polarization interfere in the HE region \rightarrow leading term = const

W polarization	\mathbf{SM}	$\mathcal{O}^{(3)}_{arphi q}$	$\mathcal{O}_{arphi \mathrm{W}}$	$\mathcal{O}_{arphi \widetilde{W}}$
$\lambda = 0$	1	$rac{\hat{s}}{\Lambda^2}$	$\frac{M_W^2}{\Lambda^2}$	0
$\lambda = \pm$	$rac{M_W}{\sqrt{\hat{s}}}$	$\frac{\sqrt{\hat{s}}M_W}{\Lambda^2}$	$\frac{\sqrt{\hat{s}}M_W}{\Lambda^2}$	$\frac{\sqrt{\hat{s}}M_W}{\Lambda^2}$

Let's not integrate over the *W*-decay angles then!

- explicit calculation without integration → interference between different helicity channels and different CP-parities restored [1708.07823]
- What are the angles?



Theory - Wh

• leading terms in $M_W/\sqrt{\hat{s}}$ expansion:

$$\begin{split} |\mathcal{M}_{SM}|^2 &\sim \frac{1}{4} \sin^2 \theta \sin^2 \theta_W + \frac{M_W}{\sqrt{\hat{s}}} \mathcal{F}(\theta, \theta_W) \cos \phi_W \\ \operatorname{Re} \mathcal{M}_{SM} \, \mathcal{M}_{\varphi q}^{(3)*} &\sim \frac{\hat{s}}{\Lambda^2} \left[\frac{1}{4} \sin^2 \theta \sin^2 \theta_W + \frac{M_W}{\sqrt{\hat{s}}} \, \mathcal{F}(\theta, \theta_W) \cos \phi_W \right] \\ \operatorname{Re} \, \mathcal{M}_{SM} \, \mathcal{M}_{\varphi W}^* &\sim \frac{\sqrt{\hat{s}} \, M_W}{\Lambda^2} \, \mathcal{F}(\theta, \theta_W) \cos \phi_W \\ \operatorname{Re} \, \mathcal{M}_{SM} \, \mathcal{M}_{\varphi \widetilde{W}}^* &\sim \frac{\sqrt{\hat{s}} \, M_W}{\Lambda^2} \, \mathcal{F}(\theta, \theta_W) \sin \phi_W \end{split}$$

• integration over θ_W does not destroy the interference \rightarrow double differential analysis in p_T^h and ϕ_W = the way to go

The story of *Zh*

The interference terms in the Zh-channel

$$|\mathcal{M}_{\mathsf{SM}}|^2 \sim \sin^2 heta \qquad \operatorname{Re} \mathcal{M}_{\mathsf{SM}} \, \mathcal{M}_{\mathsf{BSM}}^* \sim rac{\hat{s}}{\Lambda^2} \sin^2 heta$$

ightarrow employ analysis differential in $\sqrt{\hat{s}}$

But:

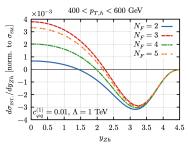
- interference terms of $\mathcal{O}_{\varphi u}, \mathcal{O}_{\varphi d} \propto \text{coupling of } Z \text{ to RH quarks}$ $\rightarrow \text{suppressed} \rightarrow \text{quadratic BSM effects relevant}$
- interference term of ${\cal O}_{arphi q}^{(1)} \propto$ SM coupling of Z to quarks
- \rightarrow opposite sign for up- and down-type quarks
- \rightarrow suppression of the interference term
- \to sensitivity to $\mathcal{O}_{\varphi q}^{(1)}$ is degraded and dominated by terms quadratic in the WC's

Theory - Zh

The solution (in principle)

 there are differences in the rapidity distributions of u- and d-type initiated processes due to the pdf's

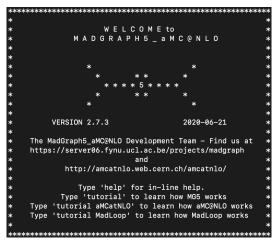
 \rightarrow alleviate cancellation by a second binning in the Zh-rapidity:



• limited statistics in each bin renders the gain small, but: potentially useful for $Z(h \rightarrow bb)$

Event Generation and Analysis

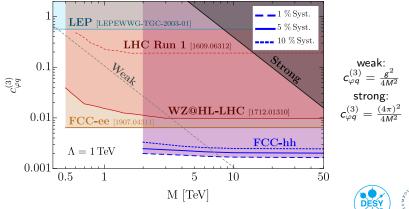
The gory details



Results

Single operator analysis of $\mathcal{O}_{\varphi q}^{(3)}$ 95% C.L. bounds depending on EFT cut-off

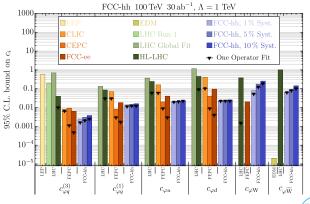
FCC-hh 100 TeV 30 ab^{-1} , 1-op. fit, (Zh + Wh)



 \odot

Results

Comparison to other bounds



What's left to do?

- $W(
 ightarrow \ell
 u) h(
 ightarrow ar{b} b)$ (larger cross-section but larger backgrounds)
- $W(\rightarrow jj)h(\rightarrow \bar{b}b)$ (same problems but potentially more sensitive to $c_{\varphi_{\mathrm{W}}}$)
- $Z(\rightarrow \nu \nu / \ell \ell) h(\rightarrow \bar{b}b)$

...

Thank you for your attention!

