

EPS-HEP 2021 Online conference, July 28, 2021

# Heavy states and electroweak effective approaches

Ignasi Rosell Universidad CEU Cardenal Herrera València (Spain)



In collaboration with: A. Pich (IFIC, UV-CSIC, València, Spain) J.J. Sanz-Cillero (UCM, Madrid, Spain)

PRD 102 (2020) 035012 [arXiv: 2004.02827] JHEP 05 (**2019**) 092 [arXiv: 1810.10544] JHEP 04 (**2017**) 012 [arXiv: 1609.06659] PRD 93 (**2016**) 055041 [arXiv: 1510.03114] JHEP 01 (**2014**) 157 [arXiv: 1310.3121] PRL 110 (**2013**) 181801 [arXiv: 1212.6769]

# OUTLINE

- 1) **Motivation**
- 2) The effective Lagrangians



- 1) Low energies: the non-linear Electroweak Effective Theory
- 2) High energies: Resonance Electroweak Theory
- 3) Matching low and high energies
- and T at NLO Phenomenology I: bosonic LEC 3)
- 4) Phenomenology
- 5) Conclusions

## 1. Motivation

- The Standard Model (SM) provides an extremely succesful description of the electroweak and strong interactions.
- A key feature is the particular mechanism adopted to break the electroweak gauge symmetry to the electroweak subgroup, SU(2)<sub>L</sub> x U(1)<sub>Y</sub> → U(1)<sub>QED</sub>, so that the W and Z bosons become massive. The LHC discovered a new particle around 125 GeV\*.
- Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore we can use EFTs because it seems there is a large mass gap.







\* <u>CMS</u> and <u>ATLAS</u> Collaborations.

Diagram by C. Krause [PhD thesis, 2016]

- Depending on the nature of the EWSB we have two possibilities for these EFTs\* (or something in between):
  - The decoupling (linear) EFT: SMEFT
    - SM-Higgs (forming a doublet with the EW Goldstones, as in the SM)
    - Weakly coupled
    - LO: SM
    - Expansion in canonical dimensions
  - The more general non-decoupling (non-linear) EFT: EWET, HEFT, EWChL
    - Non-SM Higgs (being a scalar singlet)
    - Strongly coupled
    - LO: Higgsless SM + scalar h + 3 GB (chiral Lagrangian)
    - Expansion in loops or chiral dimensions
    - Some composite Higgs models can be described within the EWET.

\* LHCHXSWG Yellow Report '16

#### What do we want to do?



#### Similarities to Chiral Symmetry Breaking in QCD

i) Custodial symmetry: The Lagrangian is approximately invariant under global  $SU(2)_L \times SU(2)_R$  transformations. Electroweak Symmetry Breaking (EWSB) turns to be  $SU(2)_L \times SU(2)_R \rightarrow SU(2)_{L+R}$ .

ii) Similar to the Chiral Symmetry Breaking (ChSB) occurring in QCD, *i.e.*, similar to the "pion" Lagrangian of Chiral Perturbation Theory (ChPT)\*^, by replacing  $f_{\pi}$  by v=1/ $\sqrt{(2G_F)}$ =246 GeV. Rescaling naïvely we expect resonances at the TeV scale.

| * <u>Weinberg '79</u><br>* Gasser and Leutwyler <u>'84</u> <u>'85</u><br>* Bijnens et al. <u>'99</u> <u>'00</u> | ** <u>Ecker et al. '89</u><br>** <u>Cirigliano et al. '06</u> | <sup>^</sup> Dobado, Espriu and Herrero '91<br><sup>^</sup> Espriu and Herrero '92<br><sup>^</sup> Herrero and Ruiz-Morales '94 |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| * Bijnens et al. <u>'99 '00</u>                                                                                 |                                                               | <sup>^</sup> Herrero and Ruiz-Morales '94                                                                                       |

#### What do we want to do?



# Similarities to Chiral Symmetry Breaking in QCD

| $QCD\left(q_{a},\ \mathcal{G}_{\mu u} ight)$ | Fundamental EW Theory (??) |
|----------------------------------------------|----------------------------|
| ↓<br>Resonance Chiral Theory                 | ¢<br>Resonance EW Theory   |
| $(\sigma, \rho, \ldots)$                     | $(M_V, M_A, \ldots)$       |
| ↓<br>Chiral Perturbation Theory              | ↓<br>EW Effective Theory   |
| $(f_{\pi}, \pi_i)$                           | $(v, \phi_i)$              |

Diagram by J. Santos [VIII CPAN days, 2016]

# 2. The effective Lagrangians

- ✓ Two electroweak Lagrangians for two energy regions:
  - Electroweak Effective Theory (EWET) at low energies (without resonances).
  - ✓ Resonance Electroweak Theory at high energies\* (with resonances).
- ✓ The aim of this work:

Estimation of the Low-Energy Constants (LECs) in terms of resonance parameters and phenomenological consequences: constraining the BSM heavy masses.

#### ✓ Steps:

- 1. Building the EWET and resonance Lagrangian
- 2. Matching the two effective theories
- 3. Phenomenology at low energies.



Bottom-up approach

- High-energy constraints
  - 1. From QCD we know the importance of sum-rules and form factos at large energies.
  - 2. Operators with a large number of derivatives tend to violate the asymptotic behaviour.
  - 3. The constraints reduce the number of unknown resonance parameters.
- This program works pretty well in QCD: estimation of the LECs (Chiral Perturbation Theory) by using Resonance Chiral Theory\*\* and importance of short-distance constraints\*\*\*.

\* Pich, IR, Santos and Sanz-Cillero <u>'16</u> <u>'17</u> \* <u>Krause, Pich, IR, Santos and Sanz-Cillero '19</u>

\*\* <u>Cirigliano et al. '06</u> \*\*\* <u>Ecker et al. '89</u>

# How do we build the Lagrangian?

- Custodial symmetry
- Degrees of freedom:
  - ✓ At low energies: bosons  $\chi$  (EW goldstones, gauge bosons, h), fermions  $\psi$
  - At high energies: previous dof + resonances (V,A,S,P and fermionic)
- Chiral power counting\*





# How do we build the Lagrangian?

- Custodial symmetry
- Degrees of freedom:
  - At low energies: bosons χ (EW goldstones, gauge bosons, h), fermions ψ
  - At high energies: previous dof + resonances (V,A,S,P and fermionic)
- Chiral power counting\*

 $\sim \mathcal{O}\left(p^{0}
ight) = rac{\psi}{\pi} \sim \mathcal{O}\left(p
ight) = \partial_{\mu}, m \sim \mathcal{O}(p) = \mathcal{T} \sim \mathcal{O}(p) = g, g' \sim \mathcal{O}(p)$  $\frac{\chi}{v}$  $\mathcal{O}(p)$ Finite pieces from loops (amplitude dependent)  $\mathcal{M}(2 \to 2) \approx \frac{p^2}{v^2} \left[ 1 + \left( \frac{c_k^r p^2}{v^2} \right) \right]$ suppression ~ /(16 $\pi^2 v^2$ ) (heavier states) (non-linearity) \* Weinberg '79 Diagram by J.J. Sanz-Cillero [HEP 2017] \* Hirn and Stern '05 \* Appelguist and Bernand '80 \* Alonso et al. '12 \* Longhitano '80 '81 \* Delgado et al. '14 \* Manohar, and Georgi '84

- \* Buchalla, Catá and Krause '13 \* Pich, IR, Santos and Sanz-Cillero '16 '17
   84 '85 \* Brivio et al. '13 \* Krause, Pich, IR, Santos and Sanz-Cillero '19
- \* Gasser and Leutwyler <u>'84</u> '85 \* Brivio et al. '13
  - Heavy states and electroweak effective approaches, I. Rosell

$$\mathcal{L}_{\text{EWET}}^{(2)} = \sum_{\xi} \left( i \, \bar{\xi} \gamma^{\mu} d_{\mu} \xi - v \left( \, \bar{\xi}_{L} \, \mathcal{Y} \, \xi_{R} \, + \, \text{h.c.} \right) \right) \\ - \frac{1}{2g^{2}} \langle \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \rangle_{2} - \frac{1}{2g'^{2}} \langle \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \rangle_{2} - \frac{1}{2g_{s}^{2}} \langle \hat{G}_{\mu\nu} \hat{G}^{\mu\nu} \rangle_{3} \\ + \frac{1}{2} \partial_{\mu} h \, \partial^{\mu} h \, - \, \frac{1}{2} \, m_{h}^{2} \, h^{2} \, - \, V(h/v) \, + \, \frac{v^{2}}{4} \, \mathcal{F}_{u}(h/v) \, \langle u_{\mu} u^{\mu} \rangle_{2}$$

\* Longhitano <u>'80 '81</u>

- \* Buchalla et al. '12 '14
- \* Alonso et al. '13
- \* Guo, Ruiz-Femenia and Sanz-Cillero '15
- \* Pich, IR, Santos and Sanz-Cillero <u>16</u> <u>17</u>
  - \* Krause, Pich, IR, Santos and Sanz-Cillero '19

$$\mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_i \,\mathcal{O}_i + \sum_{i=1}^3 \widetilde{\mathcal{F}}_i \,\widetilde{\mathcal{O}}_i + \sum_{i=1}^8 \mathcal{F}_i^{\psi^2} \,\mathcal{O}_i^{\psi^2} \\ + \sum_{i=1}^3 \widetilde{\mathcal{F}}_i^{\psi^2} \,\widetilde{\mathcal{O}}_i^{\psi^2} + \sum_{i=1}^{10} \mathcal{F}_i^{\psi^4} \,\mathcal{O}_i^{\psi^4} + \sum_{i=1}^2 \widetilde{\mathcal{F}}_i^{\psi^4} \,\widetilde{\mathcal{O}}_i^{\psi^4}$$

F<sub>1</sub> -> oblique S parameter

 $F_1$ ,  $F_3$  -> trilinear gauge coupling

F<sub>1</sub>, F<sub>3</sub>, F<sub>4</sub>, F<sub>5</sub> -> quartic gauge coupling

F<sub>6</sub>, F<sub>7</sub>, F<sub>8</sub>, F<sub>9</sub> -> vertexs involving H

| Rocor | 210 | contor |
|-------|-----|--------|
| DUSUI | ш.  | Sector |
| 0000  |     | 000.01 |
|       |     |        |

| i  | $\mathcal{O}_i$                                                                           | $\widetilde{\mathcal{O}}_i$                                              |
|----|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1  | $\frac{1}{4} \langle f_{+}^{\mu\nu} f_{+\mu\nu} - f_{-}^{\mu\nu} f_{-\mu\nu} \rangle_2$   | $\frac{i}{2} \langle f^{\mu\nu}[u_\mu, u_\nu] \rangle_2$                 |
| 2  | $\frac{1}{2} \langle f_{+}^{\mu\nu} f_{+\mu\nu} + f_{-}^{\mu\nu} f_{-\mu\nu} \rangle_{2}$ | $\langle f^{\mu\nu}_+ f_{-\mu\nu} \rangle_2$                             |
| 3  | $\frac{i}{2} \langle f_+^{\mu\nu}[u_\mu, u_\nu] \rangle_2$                                | $\frac{(\partial_{\mu}h)}{v} \langle f_{+}^{\mu\nu} u_{\nu} \rangle_{2}$ |
| 4  | $\langle u_{\mu}u_{\nu}\rangle_{2}\langle u^{\mu}u^{\nu}\rangle_{2}$                      |                                                                          |
| 5  | $\langle u_{\mu}u^{\mu}\rangle_2^2$                                                       |                                                                          |
| 6  | $\frac{(\partial_{\mu}h)(\partial^{\mu}h)}{v^2} \langle u_{\nu}u^{\nu} \rangle_2$         |                                                                          |
| 7  | $\frac{(\partial_{\mu}h)(\partial_{\nu}h)}{v^2}\langleu^{\mu}u^{\nu}\rangle_2$            |                                                                          |
| 8  | $\frac{(\partial_{\mu}h)(\partial^{\mu}h)(\partial_{\nu}h)(\partial^{\nu}h)}{v^4}$        |                                                                          |
| 9  | $\frac{(\partial_{\mu}h)}{v} \langle f_{-}^{\mu\nu} u_{\nu} \rangle_{2}$                  |                                                                          |
| 10 | $\langle \mathcal{T} u_{\mu} \rangle_2^2$                                                 |                                                                          |
| 11 | $\hat{X}_{\mu\nu}\hat{X}^{\mu\nu}$                                                        |                                                                          |
| 12 | $\langle \hat{G}_{\mu\nu}  \hat{G}^{\mu\nu}  \rangle_3$                                   |                                                                          |

\* Longhitano <u>'80 '81</u>

\* Buchalla et al. '12 '14

\* Alonso et al. '13

\* Guo, Ruiz-Femenia and Sanz-Cillero '15

\* Pich, IR, Santos and Sanz-Cillero <u>'16</u> <u>'17</u>

\* Krause, Pich, IR, Santos and Sanz-Cillero '19

$$\mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_i \mathcal{O}_i + \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i \widetilde{\mathcal{O}}_i + \sum_{i=1}^{8} \mathcal{F}_i^{\psi^2} \mathcal{O}_i^{\psi^2}$$

$$+ \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i^{\psi^2} \widetilde{\mathcal{O}}_i^{\psi^2} + \sum_{i=1}^{10} \mathcal{F}_i^{\psi^4} \mathcal{O}_i^{\psi^4} + \sum_{i=1}^{2} \widetilde{\mathcal{F}}_i^{\psi^4} \widetilde{\mathcal{O}}_i^{\psi^4}$$

#### 2.2. High energies: Resonance Electroweak Theory (with resonances)\*\*

$$\mathcal{L}_{\mathrm{RT}} = \mathcal{L}_{\mathrm{R}}[R, \chi, \psi] + \mathcal{L}_{\mathrm{non-R}}[\chi, \psi]$$

Bosonic resonances:

• V, A, S and P

- SU(2) singlets and triplets
- SU(3) singlets and octets
- Spin-1 resonances with Proca or antisymmetric formalism
- Fermionic doublet resonances:
  - Including operators with one heavy fermionic resonance
- \*\* Pich, IR, Santos and Sanz-Cillero <u>'16</u> <u>'17</u>
- \*\* Krause, Pich, IR, Santos and Sanz-Cillero '19

<u>19</u> Heavy states and electroweak effective approaches, I. Rosell

| Number of operators         |                                    |                                    |                  |                             |
|-----------------------------|------------------------------------|------------------------------------|------------------|-----------------------------|
| Field (R <sup>QCD</sup> EW) | <b>R</b> <sup>1</sup> <sub>1</sub> | <b>R</b> <sup>1</sup> <sub>3</sub> | R <sup>8</sup> 1 | R <sup>8</sup> <sub>3</sub> |
| S                           | 3                                  | 1                                  | 1                | 1                           |
| Ρ                           | 1                                  | 2                                  | 1                | 1                           |
| V with Proc                 | 3                                  | 2                                  | 2                | 2                           |
| A with Proc                 | 3                                  | 2                                  | 2                | 2                           |
| V with ant.                 | 2                                  | 5                                  | 2                | 1                           |
| A with ant.                 | 2                                  | 5                                  | 2                | 1                           |
| Fermionic                   |                                    | 6                                  | 6                |                             |

$$\mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_i \,\mathcal{O}_i + \sum_{i=1}^3 \widetilde{\mathcal{F}}_i \,\widetilde{\mathcal{O}}_i + \sum_{i=1}^8 \mathcal{F}_i^{\psi^2} \,\mathcal{O}_i^{\psi^2}$$

$$+ \sum_{i=1}^3 \widetilde{\mathcal{F}}_i^{\psi^2} \,\widetilde{\mathcal{O}}_i^{\psi^2} + \sum_{i=1}^{10} \mathcal{F}_i^{\psi^4} \,\mathcal{O}_i^{\psi^4} + \sum_{i=1}^2 \widetilde{\mathcal{F}}_i^{\psi^4} \,\widetilde{\mathcal{O}}_i^{\psi^4}$$

## 2.2. High energies: Resonance Electroweak Theory (with resonances)\*\*

$$\mathcal{L}_{\mathrm{RT}} = \mathcal{L}_{\mathrm{R}}[R, \chi, \psi] + \mathcal{L}_{\mathrm{non-R}}[\chi, \psi]$$

- Bosonic resonances:
  - V, A, S and P
  - SU(2) singlets and triplets
  - SU(3) singlets and octets
  - Spin-1 resonances with Proca or antisymmetric formalism
- Fermionic doublet resonances:
  - Including operators with one heavy fermionic resonance
- \*\* Pich, IR, Santos and Sanz-Cillero <u>'16</u> <u>'17</u> \*\* Krause, Pich, IR, Santos and Sanz-Cillero '19

2.3. Matching low and high energies

$$e^{i S_{\mathrm{eff}}[\chi,\psi]} = \int [\mathrm{d}R] e^{i S[\chi,\psi,R]}$$

- Integration of the heavy modes
- Similar to the ChPT case\*\*\*
- EWET LECs in terms of resonance parameters\*\*
- Tracks of resonances in the EWET.

\*\*\* Ecker et al. '89

3. Phenomenology I: bosonic LECs\*

- Integration of the heavy modes
- ✓ The case of P-even bosonic operators\*\*:
  - $\mathcal{O}_i$  $\mathcal{F}_i$ i $-\frac{F_V^2 - \widetilde{F}_V^2}{4M_{V^1}^2} + \frac{F_A^2 - \widetilde{F}_A^2}{4M_{A^1}^2}$  $\frac{1}{4} \left\langle f_+^{\mu\nu} f_{+\mu\nu} - f_-^{\mu\nu} f_{-\mu\nu} \right\rangle_2$ 1  $-\frac{F_V G_V}{2M_{V^1}^2} - \frac{F_A G_A}{2M_{A^1}^2}$  $\frac{i}{2} \langle f_{+}^{\mu\nu}[u_{\mu}, u_{\nu}] \rangle_{2}$ 3  $\frac{G_V^2}{4M_{V^1}^2} + \frac{\widetilde{G}_A^2}{4M_{A^1}^2}$  $\langle u_{\mu}u_{\nu}\rangle_{2} \langle u^{\mu}u^{\nu}\rangle_{2}$ 4  $\frac{c_d^2}{4M_{S^1}^2} - \frac{G_V^2}{4M_{V^1}^2} - \frac{\widetilde{G}_A^2}{4M_{A^1}^2}$ 5 $\langle u_{\mu}u^{\mu}\rangle_2 \langle u_{\nu}u^{\nu}\rangle_2$  $-rac{\widetilde{\lambda}_{1}^{hV} {}^{2}v^{2}}{M_{V1}^{2}} - rac{\lambda_{1}^{hA} {}^{2}v^{2}}{M_{A1}^{2}}$  $\frac{(\partial_{\mu}h)(\partial^{\mu}h)}{n^2} \langle u_{\nu}u^{\nu} \rangle_2$ 6  $\frac{(\partial_{\mu}h)(\partial_{\nu}h)}{n^{2}}\,\langle\,u^{\mu}u^{\nu}\,\rangle_{2}$  $\frac{d_P^2}{2M_{P^1}^2} + \frac{\lambda_1^{hA~2}v^2}{M_{A^1}^2} + \frac{\widetilde{\lambda}_1^{hV~2}v^2}{M_{V^1}^2}$ 7 $\frac{(\partial_{\mu}h)(\partial^{\mu}h)(\partial_{\nu}h)(\partial^{\nu}h)}{n^{4}}$ 8 0  $-\frac{F_A\lambda_1^{hA}v}{M_{A1}^2} - \frac{\widetilde{F}_V\widetilde{\lambda}_1^{hV}v}{M_{V1}^2}$  $\frac{(\partial_{\mu}h)}{2}\langle f_{-}^{\mu\nu}u_{\nu}\rangle_{2}$ 9

- Short-distance constraints
- Experimental constraints [95% CL]:

|             | LEC                 |            | Data           |
|-------------|---------------------|------------|----------------|
| 0.89 <      | $\kappa_W$          | < 1.13     | LHC[1]         |
| -1.02 <     | $c_{2V}$            | < 2.71     | LHC[2]         |
| -0.004 <    | $\mathcal{F}_1$     | < 0.004    | LEP via $S[3]$ |
| -0.06 <     | $\mathcal{F}_3$     | < 0.20     | LEP & LHC[4]   |
| -0.0006 <   | $\mathcal{F}_4$     | < 0.0006   | LHC[5]         |
| -0.0010 < J | $F_4 + \mathcal{F}$ | 5 < 0.0010 | LHC[5]         |

From one-loop considerations one would expect  $F_i \approx 1/(4\pi^2) \approx 10^{-3}$ .

> The running is known\*\*\*:  $|F_i(\mu = M_R) - F_i(\mu = m_h)| \approx 10^{-3}$

- [1] <u>Blas, Eberhardt and Krause '18</u>
  [2] <u>ATLAS-CONF-2019-030</u>
  [3] <u>PDG '18</u>
- [4] Da Silva et al. '19
- [5] <u>CMS '19</u>
- \*\* Pich, IR, Santos and Sanz-Cillero '17 \*\* Krause, Pich, IR, Santos and Sanz-Cillero '19
- \*\*\* Guo, Ruiz-Femenía and Sanz-Cillero '15

\* Pich, IR, Santos and Sanz-Cillero '16

\* Pich, IR and Sanz-Cillero '20

3. Phenomenology I: bosonic LECs\*

- Integration of the heavy modes
- ✓ The case of P-even bosonic operators\*\*:
  - $\mathcal{O}_i$  $\mathcal{F}_i$ i $-\frac{F_V^2 - \widetilde{F}_V^2}{4M_{V^1}^2} + \frac{F_A^2 - \widetilde{F}_A^2}{4M_{A^1}^2}$  $\frac{1}{4} \left\langle f_+^{\mu\nu} f_{+\mu\nu} - f_-^{\mu\nu} f_{-\mu\nu} \right\rangle_2$ 1  $-\frac{F_V G_V}{2M_{V^1}^2} - \frac{F_A G_A}{2M_{A^1}^2}$  $\frac{i}{2} \langle f_{+}^{\mu\nu}[u_{\mu}, u_{\nu}] \rangle_{2}$ 3  $\frac{G_V^2}{4M_{V^1}^2} + \frac{\widetilde{G}_A^2}{4M_{A^1}^2}$  $\langle u_{\mu}u_{\nu}\rangle_{2} \langle u^{\mu}u^{\nu}\rangle_{2}$ 4  $\frac{c_d^2}{4M_{S^1}^2} - \frac{G_V^2}{4M_{V^1}^2} - \frac{\widetilde{G}_A^2}{4M_{A^1}^2}$ 5 $\langle u_{\mu}u^{\mu}\rangle_2 \langle u_{\nu}u^{\nu}\rangle_2$  $-rac{\widetilde{\lambda}_{1}^{hV} {}^{2}v^{2}}{M_{V1}^{2}} - rac{\lambda_{1}^{hA} {}^{2}v^{2}}{M_{A1}^{2}}$  $\frac{(\partial_{\mu}h)(\partial^{\mu}h)}{n^2} \langle u_{\nu}u^{\nu} \rangle_2$ 6  $\frac{(\partial_{\mu}h)(\partial_{\nu}h)}{n^{2}}\,\langle\,u^{\mu}u^{\nu}\,\rangle_{2}$  $\frac{d_P^2}{2M_{P^1}^2} + \frac{\lambda_1^{hA~2}v^2}{M_{A^1}^2} + \frac{\widetilde{\lambda}_1^{hV~2}v^2}{M_{V^1}^2}$ 7 $\frac{(\partial_{\mu}h)(\partial^{\mu}h)(\partial_{\nu}h)(\partial^{\nu}h)}{\sqrt[4]{4}}$ 8 0  $-\frac{F_A\lambda_1^{hA}v}{M_{A1}^2} - \frac{\widetilde{F}_V\widetilde{\lambda}_1^{hV}v}{M_{V1}^2}$  $\frac{(\partial_{\mu}h)}{2}\langle f_{-}^{\mu\nu}u_{\nu}\rangle_{2}$ 9

- Short-distance constraints
- Experimental constraints [95% CL]:

| LEC                                       |                 | couping               |
|-------------------------------------------|-----------------|-----------------------|
| $0.89 < \kappa_W$                         | < 1.13          | hWW coupling          |
| $-1.02 < c_{2V}$                          | < 2.71          | hhWW coupling         |
| $-0.004 < F_1$                            | < 0.004         | S parameter           |
| $-0.06 < F_3$                             | < 0.20          | triple gauge coupling |
| $-0.0006 < \mathcal{F}_4$                 | < 0.0006        | quartic gauge         |
| $-0.0010 < \mathcal{F}_4 + \mathcal{F}_5$ | $_{0} < 0.0010$ | coupling              |

From one-loop considerations one would expect  $F_i \approx 1/(4\pi^2) \approx 10^{-3}$ .

> The running is known\*\*\*:  $|F_i(\mu = M_R) - F_i(\mu = m_h)| \approx 10^{-3}$

[1] <u>Blas, Eberhardt and Krause '18</u>
[2] <u>ATLAS-CONF-2019-030</u>
[3] PDG '18

[4] Da Silva et al. '19

[5] <u>CMS '19</u>

- \*\* Pich, IR, Santos and Sanz-Cillero '17 \*\* Krause, Pich, IR, Santos and Sanz-Cillero '19
- \*\*\* Guo, Ruiz-Femenía and Sanz-Cillero 15

\* Pich, IR, Santos and Sanz-Cillero '16

\* Pich, IR and Sanz-Cillero '20



,



# 4. Phenomenology II: S and T at NLO\*



\*\* Peskin and Takeuchi '92

# 4. Conclusions

- ✓ Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore we can use EFTs because we have a mass gap.
- As a consequence of the mass gap, bottom-up EFTs are appropriate to search for BSM. Depending on the nature of the EWSB we have two possibilities:
  - Decoupling (linear) EFT: SMEFT
    - ✓ SM-Higgs and weakly coupled
    - Expansion in canonical dimensions
  - ✓ Non-decoupling (non-linear) EFT: EWET (HEFT or EWChL)
    - ✓ Non-SM Higgs and strongly coupled
    - Expansion in loops or chiral dimensions
- Similarities to ChSB of QCD -> ChPT and RChT
- Phenomenology
  - Estimation of the LECs by using resonance Lagrangians and short-distance constraints.
  - S and T at NLO by using resonance Lagrangians and short-distance constraints.

Experimental LHC constraints start to be competitive.

Room for these BSM scenarios and M<sub>R</sub> ≳2 TeV.

#### Phenomenology I: bosonic LECs\* [annex]



#### Phenomenology II: S and T at NLO\* [annex]



\* Pich, IR and Sanz-Cillero '12 '13 '14

Phenomenology III: contact four-fermion operators\*

- ✓ With light leptons and/or quarks
  - From dijet production

 $\Lambda \ge 21.8$  TeV from ATLAS  $\Lambda \ge 18.6$  TeV from CMS  $\Lambda \ge 16.2$  TeV from LEP

From dilepton production

 $\Lambda \ge 26.3$  TeV from ATLAS  $\Lambda \ge 19.0$  TeV from CMS  $\Lambda \ge 24.6$  TeV from LEP

Including top and bottom quarks

From high-energy collider studies

 $\Lambda \ge 1.5$  TeV from multi top production at LHC and Tevatron  $\Lambda \ge 2.3$  TeV from t and tt production at LHC and Tevatron  $\Lambda \ge 4.7$  TeV drom dilepton production at LHC

From low-energy studies

 $\Lambda \ge 14.5 \text{ TeV}$  from  $B_s - \overline{B}_s$  mixing  $\Lambda \ge 3.3 \text{ TeV}$  from semileptonic B decays

\* See references in Krause, Pich, IR, Santos and Sanz-Cillero '19

#### Phenomenology IV: HVT diboson searches\*

- Our model-independent approach can be related to the popular Heavy Vector Triplet simplifed model (HVT)\*\*.
- ✓ LHC diboson production experimental analysis (ATLAS and CMS).
- Exclusion in the (mass, coupling) plane and the scale  $\Lambda$



#### Proca vs. antisymmetric formalism\*

- By using path integral and changes of variables both formalisms are proven to be equivalent:
  - A set of relations between resonance parameters emerges.
  - ✓ The couplings of the non-resonant operators are different:  $\mathcal{L}_{non-R}^{(P)} \neq \mathcal{L}_{non-R}^{(A)}$
- High-energy behaviour is fundamental:

$$\mathbb{F}_{\varphi\varphi}^{\mathcal{V}}(s) = \begin{cases} 1 + \frac{F_V G_V}{v^2} \frac{s}{M_V^2 - s} + \frac{\tilde{F}_A \tilde{G}_A}{v^2} \frac{s}{M_A^2 - s} - 2\mathcal{F}_3^{\text{SDA}} \frac{s}{v^2} & (A) \\ 1 + \frac{f_{\hat{V}} g_{\hat{V}}}{v^2} \frac{s^2}{M_V^2 - s} + \frac{\tilde{f}_{\hat{A}} \tilde{g}_{\hat{A}}}{v^2} \frac{s^2}{M_A^2 - s} - 2\mathcal{F}_3^{\text{SDP}} \frac{s}{v^2} & (P) \end{cases}$$



= 0

\* Ecker et al. '89

\* Bijnens and Pallante '96

\* Kampf, Novotny and Trnka '07

\* Pich, IR, Santos and Sanz-Cillero '16 '17

\* Krause, Pich, IR, Santos and Sanz-Cillero '19

$$\mathcal{F}_3^{ ext{SDP}} = -rac{f_{\hat{V}} \, g_{\hat{V}}}{2} - rac{f_{\hat{A}} \, \widetilde{g}_{\hat{A}}}{2}$$

 $\mathcal{F}_{3}^{\mathrm{SDA}}$