Secondary nuclei from ¹⁶O fragmentation at the LHC

<u>Aleksandr Svetlichnyi^{*)},</u> Roman Nepeivoda, Nikita Kozyrev, Igor Pshenichnov **INR RAS, MIPT(NRU)**

*)aleksandr.svetlichnyy@phystech.edu

Deepened Impulse, V. Kandinsky 1928

Motivation

- A short ¹⁶O–¹⁶O run is planned at the LHC to explore small systems
- Discussed at the dedicated workshop "Opportunities of OO and pO collisions at the LHC" https://indico.cern.ch/event/975877/
- The initial cluster structure of ^{16}O may impact eccentricity, flow, and R_{AA} for D-mesons. $^{1),2),3),4)}$
- Does the cluster structure of ¹⁶O affects the spectator matter produced in the relativistic ¹⁶O–¹⁶O collisions?
- How many spectator fragments with the same Z/A-ratio with ¹⁶O will be transported in the LHC along with beam nuclei?

Yi-An Li et al., PRC 102 (2020) 054907
 W. Broniowski et al., NPA 1005 (2021) 121763
 R.Katz et al., PRC 102 (2020) 041901
 S. H. Lim et al, PRC 99 (2019) 044904

Density distributions of ¹⁶O

Outline

- Our model: Abrasion-Ablation Monte Carlo for Colliders (AAMCC)
- Comparison with data on fragmentation of ¹⁶O in nuclear emulsion
- Modelling spectator nucleons and nuclei from hadronic ¹⁶O-¹⁶O collisions at the LHC
- Secondary nuclei from ultraperipheral
 ¹⁶O-¹⁶O collisions at the LHC

Abrasion-Ablation Monte Carlo for Colliders

- Nucleus-nucleus collisions are simulated by means of the Glauber Monte Carlo model¹). Non-participated nucleons form spectator matter (prefragment).
- Excitation energy of prefragment is calculated as follows:
 - in peripheral collisions with less then ~15% of removed nucleons the particlehole model is used²⁾ (Ericson formula);
 - otherwise a parabolic ALADIN approximation³⁾ is applied with parameters tuned to data obtained in nuclear emulsions.
- Decays of prefragments are simulated as follows:
 - pre-equilibrium decays modelled with MST-clustering algorithm;
 - Fermi break-up model from Geant4 v9.24);
 - Weisskopf-Ewing evaporation model from Geant4 v10.44).
- 1) C. Loizides, J.Kamin, D.d'Enterria Phys. Rev. C **97** (2018) 054910 2) T. Ericson Adv. In Phys. **9** (1960) 737 3) A. Botvina et al. NPA **584** 4) J. Alison et al. Nucl. Inst. A **835** (2016) 186

- Harmonic oscillator (HO) is based on $\rho(r) = \rho_0 \cdot r^2 (1 + R(r^2/a^2)) \exp(-r^2/a^2)$ with R=1.833 fm and a=1.544 fm¹).
- For the details of direct wavefunction (DW) calculation see ²). Alpha-clustering is not taken into account, only two- and three-body interactions.
- DW radial density distribution possess a longer "tail" compared to HO.
 - This results in larger total hadronic cross section for DW and different abrasion geometry.
- 1) C.Loizides et al, arXiv:1408.2549v9
- 2) S. H. Lim et al, PRC 99 (2019) 044904

Production of specific elements

- Collisions of ¹⁶O with nuclear emulsion (Em), CNO (light) + AgBr (heavy).
- The production of **He**, **Li**, **B**, **N** is **described** by AAMCC in general.
- The production of **carbon** is underestimated for both experiments.
- Slightly **better** agreement obtained with the **DW** parametrisation.

Secondary nuclei from hadronic interactions at the LHC

- Calculated with masses from nuclear data tables^{*)}.
- Many isotopes of each element: ¹⁶⁻¹³O, ¹⁵⁻¹³N, ¹⁴⁻¹⁰C, ¹³⁻¹⁰B, ^{10,9,7}Be, ⁸⁻⁶Li, ^{6,4,3}He, ^{3,2}H.
- ²H, ³He and ⁴He are most frequent.
- Same sets of secondary nuclei are predicted with DW and HO, but with slightly different cross sections.
 *)JAEA Tables of Nuclear Data

Secondary nuclei from hadronic interactions at the LHC

- Nuclei with Z/M close to this ratio in ¹⁶O.
- May be transported by the accelerator magnetic system along with ¹⁶O.
- Largest production cross sections for ²H and ⁴He.

Production of ⁴He

- The production of single alpha-particles is overestimated in O+Em interactions.
- In contrast, the production of single alpha-particles in O+CNO interactions is underestimated.
- The rates of two and three alphas are underestimated in both cases.
- Indicates the presence of alpha-clustering in the initial nuclei

Production of few nucleons and multiple alphas, because of the presence of virtual alpha-clusters in ¹⁶O.

Multiplicity distributions of spectator neutrons and

- More free nucleons are predicted with DW, because the density distribution extends to larger radii.
- Note a large fraction of neutronless events, up to 0.3 b (~20% of had. c.s.).
- Neutron Zero Degree Calorimeters are useless in triggering such neutronless events.

EMD of 200A GeV ¹⁶O in nuclear emulsion

- Data on fragmentation of ¹⁶O in nuclear emulsion^{1),2)} (points) are described well by RELDIS³⁾ (histogram).
- Here the data on relative yields of specific elements^{1),2)} were normalized to RELDIS result for the absolute inclusive cross section σ (Z=7).
- RELDIS was also validated with data⁴⁾ on multifragmentation of ¹²C by 700-1500 MeV photons.

G. Baroni et al., NPA 516 (1990) 673
 G. Singh, P.L. Jain, ZPA 344 (1992) 73
 I.A. Pshenichnov et al., PRC 57 (1998) 1920
 V. Nedorezov et al., NPA 940 (2015) 264

Tagging UPC events with ZDC

- Signatures of EMD of ¹⁶O will differ from those of ²⁰⁸Pb:
 - Forward protons are expected to be emitted by ¹⁶O nearly with the same probability as neutrons – ALICE proton ZDC have to be employed in addition to neutron ZDC
- In contrast to EMD of ²⁰⁸Pb, where a single nuclear residue typically left after the emission of neutrons, multifragmentation of ¹⁶O is expected in UPC.

Conclusion

- The production of He, Li, B, N in O+CNO is described by AAMCC in general, while the production of C is underestimated.
- The production of various nuclei is predicted by AAMCC for the ¹⁶O-¹⁶O collisions at the LHC. The sets of secondary nuclei are same for DW and HO parametrisation of nuclear density in ¹⁶O.
- The total rate of 4He is described well by AAMCC, but not the channels with specific multiplicity.
- Multiplicity distributions of secondary nucleons are sensitive to the parametrisation of nuclear density of ¹⁶O.
- Ultraperipheral ¹⁶O-¹⁶O collisions at the LHC were modelled by means of RELDIS. Protons are produced as frequently as neutrons, multifragmentation of ¹⁶O is expected.
- The disagreement with data on production of ⁴He and C suggests that alpha-clustering in ¹⁶O should be taken into account in calculations.

Thank you for attention!

Five Tetrahedra, Dave Peacock 2013

Deepened Impulse, V. Kandinsky 1928