

Constraining transport properties of quark-gluon plasma using non-linear hydrodynamic response

Zuzana Moravcová, You Zhou

zuzana.moravcova@cern.ch you.zhou@cern.ch

Niels Bohr Institute, University of Copenhagen

THE VELUX FOUNDATIONS

Anisotropic flow

- Partial overlap ⇒ Spatial anisotropy ⇒
 ⇒ Different pressure gradients ⇒
 ⇒ Particles "flow"
- Fourier series decomposition of azimuthal distribution of emitted particles:

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \Psi_n)$$

- Ψ_n flow symmetry plane (defined by *xz*)
- v_n flow coefficients
 - Nowadays typically calculated using m-particle correlations, $v_n\{m\}$
- Together they make flow vector $\vec{V}_n = v_n e^{in\Psi_n}$

Relation to QGP properties

- What information can measuring of flow vector provide?
 - Initial-state conditions (initial geometry)
 - QGP properties, e.g. transport coefficients (shear viscosity η/s, bulk viscosity ξ/s) as a function of temperature
- Measured flow coefficients v_n alone do not make it possible to distinguish between the different η/s temperature dependencies
 - Differences only in peripheral collisions

Initial condition dependence

- Assumption $v_n \propto \epsilon_n$
 - ϵ_n is *n*-th eccentricity

•
$$\epsilon_n e^{in\Phi_n} = -\frac{\int r dr d\varphi r^n e^{in\varphi} \varepsilon(r,\varphi)}{\int r dr d\varphi r^n \varepsilon(r,\varphi)}$$

- $\varepsilon(r, \varphi)$ is the initial energy density in the transverse plane
- Stronger linear correlations between v_n and e_n in central collisions
- Approximately linear response for v₂ and v₃ harmonics
- Stronger linear correlations for v_2 than v_3
- Basically no linear correlation between v_4 and ϵ_4

H. Niemi et al., Phys. Rev. C 87, 054901 (2013)

Non-linear hydrodynamic response

- Non-negligible non-linear response for v_n with $n \ge 4$
- Pearson correlation coefficient:

$$r(X, Y) = \frac{\langle XY \rangle - \langle X \rangle \langle Y \rangle}{\sqrt{Var[X]}\sqrt{Var[Y]}}$$

$$r(X, Y) = 1 - \text{linearly correlated}$$

 $r(X, Y) = 0 - \text{uncorrelated}$

- Linear response:
 - v_4 almost linearly correlated with ϵ_4 in central collisions, rapid decrease towards peripheral collisions
 - Similar case for v_5 and ϵ_5
- Non-linear response:
 - Correlation between v_4 and ϵ_2^2 gets more important from semi-central collisions, dominant in peripheral collisions
 - Non-monotonic centrality dependence of correlation between v_5 and $\epsilon_2 \epsilon_3$
- Not possible to do such study experimentally

Experimental studies

• Symmetric cumulants

- Correlations between two flow coefficients with their second moments
- $SC(m,n) = \langle v_m^2 v_n^2 \rangle \langle v_m^2 \rangle \langle v_n^2 \rangle$
- More sensitive to both initial state information and medium properties than individual flow harmonics, e.g. strongly dependent on η/s of the QGP

ALICE Collaboration, Phys. Rev. Lett. 117, 182301 (2016)

Higher orders of multi-particle cumulants

- Multi-particle cumulant = a genuine multi-particle correlation after the subtraction of lower orders
- Can be used for the construction of the probability density function of a single harmonics, $P(v_n)$
 - Initial geometry fluctuations result in fluctuations in the final state
 - $\langle v_2^k \rangle \neq \langle v_2 \rangle^k$
- Correlations between different harmonics help further understand initial conditions and dynamic evolution of the QGP
 - Nearly insensitive to non-flow
 - High discriminating power between different initialstate and transport models

 $\begin{aligned} & \text{Moments of } p.d.f. \\ & \langle v_n \rangle \approx ((v_n \{2\}^2 + v_n \{4\}^2)/2)^{1/2} \\ & \sigma_{v_n} \approx ((v_n \{2\}^2 - v_n \{4\}^2)/2)^{1/2} \\ & \text{Skewness} \ \simeq -2^{3/2} \frac{v_2 \{4\}^3 - v_2 \{6\}^3}{(v_2 \{2\}^2 - v_2 \{4\}^2)^{3/2}} \\ & \text{Kurtosis} \simeq -\frac{3}{2} \frac{v_2 \{4\}^4 - 12 v_2 \{6\}^4 + 16 v_2 \{8\}^4}{(v_2 \{2\}^2 - v_2 \{4\}^2)^2} \end{aligned}$

ZM, YZ, et al., Physical Review C 103, 024913 (2021)

Multi-particle cumulants

- Number of terms of multi-particle cumulant follows Bell numbers
 - 6-particle cumulant: **203** terms
 - 8-particle cumulant: **4140** terms
- Many terms contain average over single particle correlation which *must be zero*
 - Thanks to the isotropic azimuthal distribution over many events
- How to obtain formula for higher orders **without** calculating thousands of terms?

General algorithm for multi-particle cumulants of arbitrary order

- Possible to calculate easily and efficiently any order of multi-particle cumulants of single harmonic
 - $v_2{6}, v_2{8}, v_2{10}, v_2{12}, v_2{14}, \dots$
- Introducing *mixed harmonic cumulants*
 - Correlations of any moments of different flow coefficients, e.g. $MHC(v_2^2, v_3^2), MHC(v_2^4, v_3^2), MHC(v_2^6, v_3^2), MHC(v_2^2, v_3^2, v_4^2)$
 - $SC(m,n) = MHC(v_m^2, v_n^2)$
- Physical Review C 103, 024913 (2021)


```
complex Cumulant(int* harmonic, int n, bool remove_zeros=true, int negsplit=-1,
int mult = 1, int skip = 0)
bool remove_term = false;
if (remove_zeros)
  int har_sum = 0;
  for (int i = 0; i<mult; ++i) har_sum += harmonic[n-1+i];</pre>
  if (har_sum != 0) remove_term = true;
7
complex c = 0;
if (!remove_term)
  c = Corr(harmonic+(n-1), mult);
  if (n == 1) return c;
  c *= negsplit*Cumulant(harmonic, n-1, remove_zeros, negsplit-1);
int h_hold = harmonic[n-2];
for (int counter = 0; counter <= n-2-skip; ++counter)
Ł
  harmonic[n-2] = harmonic[counter];
  harmonic[counter] = h_hold;
  c += Cumulant(harmonic, n-1, remove_zeros, negsplit, mult+1, n-2-counter);
  harmonic[counter] = harmonic[n-2];
harmonic[n-2] = h_hold;
return c;
```

Correlations of higher moments

- Change of signs for 4-, 6-, and 8-particle correlations
- In agreement with ALICE results
 - Phys. Lett. B (2021) 136354
 - See talk by ALICE Collaboration

ZM, YZ, et al., Physical Review C 103, 024913 (2021)

Linear hydrodynamic response using $nMHC(v_2^k, v_3^l)$

- iEBE-VISHNU model with different initial conditions to study the sensitivity to η/s
- Ratio = $nMHC(v_2^k, v_3^l)/nMHC(\epsilon_2^k, \epsilon_3^l)$
- $nMHC(v_2^k, v_3^l)$ with v_2^k (k > 2)
 - Linear response holds only in central collisions
 - Sizeable difference for different initial conditions in peripheral collisions
- $nMHC(v_2^k, v_3^l)$ with v_3^l (l > 2)
 - Linear response totally breaks down

M. Li et al., arXiv:2104.10422 (accepted by PRC)

Correlations of three flow coefficients

- Together with studies of single v_n fluctuations and correlations between two flow coefficients, more information can be provided to the joint probability density function
- $nMHC(v_m^k, v_n^l, v_p^q)$ do not follow the centrality dependence of $nMHC(\epsilon_m^k, \epsilon_n^l, \epsilon_p^q)$
 - $nMHC(\epsilon_2^2, \epsilon_3^2, \epsilon_4^2)$ compatible with zero while $nMHC(v_2^2, v_3^2, v_4^2)$ has significantly non-zero value
- $nMHC(v_2^2, v_4^2)$ and $nMHC(v_3^2, v_5^2)$ have been studied as well (see back up), visible non-linear response

M. Li et al., arXiv:2104.10422 (accepted by PRC)

Summary

- Possible to calculate arbitrary order of single flow harmonic coefficient and any correlation between any moments of different harmonics using the general algorithm for multi-particle cumulants
- Future investigations of mixed harmonic cumulants can be used to study non-linear hydrodynamic response — its understanding can help to better understand hydrodynamic evolution and to provide tighter constrains on initial models

Thank you for you attention!

BACK UP

Correlations with higher harmonics

- Sensitive to both η/s and initial conditions
- v_4 and v_5 have non-linear response to ϵ_2 and $\epsilon_2 \epsilon_3$, respectively
 - Results in large deviation between $nMHC(v_2^2, v_4^2)$ and $nMHC(\epsilon_2^2, \epsilon_4^2)$ and between $nMHC(v_3^2, v_5^2)$ and $nMHC(\epsilon_3^2, \epsilon_5^2)$

M. Li et al., arXiv:2104.10422 (accepted by PRC)