Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Kotliarov Artem, NPI CAS
for the ALICE Collaboration

The European Physical Society Conference on High Energy Physics 2021
Introduction

Jet shower in vacuum

Evolution of highly virtual parton via gluon radiation

- Precise understanding in pQCD
- Reference process for nucleus collisions
Introduction

Jet shower in vacuum

Evolution of highly virtual parton via gluon radiation
- Precise understanding in pQCD
- Reference process for nucleus collisions

Jet shower in-medium

- Parton energy loss via medium-induced gluon radiation and elastic collisions \rightarrow jet quenching
- Consequences of jet quenching:
 1. Yield suppression of high-p_T hadrons and jets
 2. Modification of jet substructure
 3. Medium-induced acoplanarity \rightarrow semi-inclusive measurements of trigger-jet acoplanarity (trigger: high-p_T hadron, γ or Z)
Hadron-jet acoplanarity

Regions of interest

1. Small $|\Delta \varphi - \pi|$
 - Direct estimation of jet transport coefficient q
 - Negative radiative correction \rightarrow reduction of broadening (B. G. Zakharov, arxiv:2003.10182)
Hadron-jet acoplanarity

Regions of interest

1. Small $|\Delta \varphi - \pi|$
 - Direct estimation of jet transport coefficient q
 - Negative radiative correction \rightarrow reduction of broadening (B. G. Zakharov, arxiv:2003.10182)

2. Large $|\Delta \varphi - \pi|$
 - Single hard scattering \rightarrow large angle scattering of parton on QGP quasi-particles
 - Probe short distance quasi-particle structure of QGP (F. D’Eramo, Rajagopal, Y. Yin, JHEP 01 (2019) 172)
Hadron-jet acoplanarity via semi-inclusive measurements

Per trigger normalized yield of jets recoiling from high-p_T hadron

\[
\frac{1}{N_{\text{trig}}^{AA}} \frac{d^2N_{\text{jet}}^{AA}}{dp_{T,\text{jet}}^{ch}d\eta_{\text{jet}}} \bigg|_{p_{T,\text{trig}}\in TT} = \left(\frac{1}{\sigma^{AA\rightarrow h+X}} \frac{d^2\sigma^{AA\rightarrow h+jet+X}}{dp_{T,\text{jet}}^{ch}d\eta_{\text{jet}}} \right) \bigg|_{p_{T,h}\in TT} \rightarrow \text{Calculable in pQCD}
\]

Cross section for trigger hadron production
Differential cross section for coincidence production of trigger hadron and recoil jet

Semi-inclusive measurements provide:

- Unbiased jet population
- Access to low p_T jets → more sensitive to medium-induced broadening
- Data driven approach for removal of uncorrelated background yield
 → essential for precise acoplanarity measurements
Hadron-jet acoplanarity: Δ_{recoil} observable

- Jets recoiling from a high-p_T trigger hadron
- Data-driven approach to remove uncorrelated background yield

$$\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}^{AA}} \frac{d^2N_{\text{jet}}^{AA}}{dp_{T,\text{jet}}^{ch}d\eta_{\text{jet}}} \bigg|_{p_{T,\text{trig}} \in \text{TT}_{\text{Sig}}} - c_{\text{Ref}} \cdot \frac{1}{N_{\text{trig}}^{AA}} \frac{d^2N_{\text{jet}}^{AA}}{dp_{T,\text{jet}}^{ch}d\eta_{\text{jet}}} \bigg|_{p_{T,\text{trig}} \in \text{TT}_{\text{Ref}}$$

TT$_{\text{Sig}}$: $20 < p_T < 50 \text{ GeV}/c$

TT$_{\text{Ref}}$: $5 < p_T < 7 \text{ GeV}/c$

\[p_{T,\text{trig}} > 0.15 \text{ GeV}/c \eta_{\text{trig}} < 0.7, \text{ anti-}\kappa_T R = 0.2 \]
Hadron-jet acoplanarity: Δ_{recoil} observable

- Jets recoiling from a high-p_T trigger hadron
- Data-driven approach to remove uncorrelated background yield

\[\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}^{AA}} \frac{d^2N_{\text{jet}}^{AA}}{d\varphi_{\text{jet}} d\eta_{\text{jet}}} \bigg|_{P_{T,\text{trig}} \in \text{TT}_{\text{Sig}}} - c_{\text{Ref}} \cdot \frac{1}{N_{\text{trig}}^{AA}} \frac{d^2N_{\text{jet}}^{AA}}{d\varphi_{\text{jet}} d\eta_{\text{jet}}} \bigg|_{P_{T,\text{trig}} \in \text{TT}_{\text{Ref}}} \]
Results: Run 1 Pb-Pb $\sqrt{s_{\text{NN}}} = 2.76$ TeV

- Limited statistics
- Uncorrected for p_T and angular smearing
- Anti-k_T charged-particle jets $R = 0.4$ with $p_T \in (40, 60)$ GeV/c
- Fit function:

$$f(\Delta \phi) = p_0 \times e^{(\Delta \phi - \pi)/\sigma} + p_1$$

- Suppression of Pb-Pb data comparing to PYTHIA pp
- No evidence for medium-induced acoplanarity within uncertainties
Results: Run 2 Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV

- x9 larger statistics with respect to Run 1 data
- Anti-k_T charged-particle jets $R = 0.2$ with $p_T \in (30, 40)$ GeV/c
- Fully corrected hadron-jet $\Delta \phi$ distribution
- Recoil jet yield suppressed compared to pp PYTHIA data
- Indication of narrowing of acoplanarity distribution in $30 < p_{T,jet}^{ch} < 40$ GeV/c

Radiative corrections?

B. G. Zakharov, arxiv:2003.10182

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Kotliarov Artem

EPS-HEP 2021
High-particle multiplicity pp collisions
Quark-gluon plasma formation in small collision systems?

Collective flow

CMS, arXiv:1305.0609v3
Quark-gluon plasma formation in small collision systems?

Collective flow

Azimuthal correlation between two particles

pp 7 TeV

Minimum bias events

High-multiplicity events

CMS, JHEP 09 (2010) 091

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

CMS, arXiv:1305.0609v3
Quark-gluon plasma formation in small collision systems?

Collective flow

Azimuthal correlation between two particles

Minimum bias events

High-multiplicity events

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

CMS, arXiv:1305.0609v3

Jet quenching in high particle multiplicity pp collisions

R_{AA} nuclear modification factor measurements

$$R_{AA} = \frac{\frac{d^2N_{AA}}{dydp_T}}{\left(T_{AA}\right)\frac{d^2\sigma^{INEL}_{pp}}{dydp_T}}$$

undefined Glauber scaling factor for

high particle multiplicity pp

CMS, JHEP 09 (2010) 091

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE Kotliarov Artem EPS-HEP 2021
Quark-gluon plasma formation in small collision systems?

Collective flow

Azimuthal correlation between two particles

Minimum bias events

High-multiplicity events

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

CMS, arXiv:1305.0609v3

Jet quenching in high particle multiplicity pp collisions

R_{AA} nuclear modification factor measurements

$$R_{AA} = \frac{d^2 N_{AA}/dyd\rho_T}{\langle T_{AA} \rangle d^2 \sigma_{pp}^{INEL}/dyd\rho_T}$$

Semi-inclusive measurements

$$\frac{1}{\sigma_{AA\rightarrow h+jet+X}} \left. \frac{d^2 \sigma_{AA\rightarrow h+jet+X}}{dp_T^{ch}, jet d\eta_{jet}} \right|_{h \in TT} = \frac{1}{\sigma_{pp\rightarrow h+X}} \left. \frac{d^2 \sigma_{pp\rightarrow h+X}}{dp_T^{ch}, jet d\eta_{jet}} \right|_{h \in TT} \times \langle \frac{T_{AA}}{T_{AA}} \rangle_{h \in TT}$$

Glauber scaling factors $\langle T_{AA} \rangle$ cancel identically

CMS, JHEP 09 (2010) 091

Minimum bias events

High-multiplicity events
Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

- Data from 2016 - 2018
- Online triggers based on V0 arrays:
 - Minimum bias (MB): 0.098 pb^{-1}
 - High-multiplicity (HM): 13 pb^{-1}

- Offline event activity (EA) selection:
 \[V0M = V0A + V0C \rightarrow \text{sum of signals} \]
- Scaled multiplicity \(V0M/\langle V0M \rangle \)
 \(\langle V0M \rangle \) - mean of MB distribution

\[pp \ data \ \sqrt{s} = 13 \ TeV \]
Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Kotliarov Artem

● Anti-$k_T \ R = 0.4$ charged-particle recoil jets

Uncorrected data

● Estimated uncertainty from tracking efficiency

● Significant suppression and broadening of HM data when compared to MB
Acoplanarity versus event activity: uncorrected data and PYTHIA 8

- Anti-\(k_T\) \(R = 0.4\) charged-particle recoil jets

Uncorrected data
- Estimated uncertainty from tracking efficiency
- Significant suppression and broadening of HM data when compared to MB

PYTHIA 8 simulation
- Does not account for jet quenching
- Exhibits qualitatively similar suppression effect as real data
PYTHIA 8 simulation

Recoil jet pseudorapidity distribution vs. event activity

- HM bias imposed by V0M selection enhances probability to find a high-p_T recoil jet in V0
- Lower enhancement in V0A is caused by asymmetric coverage of V0 arrays
- HM selection biases recoil jets

 ★ V0M is defined as the number of charged, final state particles within V0A & V0C acceptances

EPS-HEP 2021
Recoil jet pseudorapidity distribution vs. event activity

- HM bias imposed by V0M selection enhances probability to find a high-p_T recoil jet in V0
- Lower enhancement in V0A is caused by asymmetric coverage of V0 arrays
- HM selection biases recoil jets

★ V0M is defined as the number of charged, final state particles within V0A & V0C acceptances
Recoil jet pseudorapidity distribution vs. event activity

- HM events → suppressed probability to have 1 hard recoil jet in ALICE central barrel w.r.t. MB
- HM bias imposed by V0M selection enhances probability to find a high-\(p_T\) recoil jet in V0
- Lower enhancement in V0A is caused by asymmetric coverage of V0 arrays
- HM selection biases recoil jets

★ VOM is defined as the number of charged, final state particles within V0A & V0C acceptances

Number of high-\(p_T\) recoil jet vs. event activity

- HM selection biases recoil jets

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Kotliarov Artem

EPS-HEP 2021
Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Kotliarov Artem

Enhancement of multi-jet events

ALICE Simulation

Recoil jet pseudorapidity distribution vs. event activity

Number of high-p_T recoil jet vs. event activity

- HM bias imposed by V0M selection enhances probability to find a high-p_T recoil jet in V0
- Lower enhancement in V0A is caused by asymmetric coverage of V0 arrays
- HM selection biases recoil jets

★ VOM is defined as the number of charged, final state particles within V0A & V0C acceptances

ALICE preliminary

pp $\sqrt{s} = 13$ TeV

PYTHIA 8 Monash

Anti-k_T charged jets, $R = 0.4$

Events with $TT(20,30)$

Recoil jets: $|\phi_{\text{jet}} - \phi_{\text{jet}}| > \pi/2$

$p_T^{\text{jet}} > 25$ GeV/c

$0 < \text{V0M/(V0M)} < 3$

$3 < \text{V0M/(V0M)} < 5$

$5 < \text{V0M/(V0M)} < 9$

η_{jet}

λ_{jet} (rod) (rad)

- HM events \rightarrow suppressed probability to have 1 hard recoil jet in ALICE central barrel w.r.t. MB

- HM trigger \rightarrow bias towards multi-jet final states

ALICE Simulation

pp $\sqrt{s} = 13$ TeV

PYTHIA 8 Monash

Anti-k_T charged jets, $R = 0.4$

Recoil jets: $|\phi_{\text{jet}} - \phi_{\text{jet}}| > \pi/2$

$p_T^{\text{jet}} > 25$ GeV/c

$|\eta_{\text{jet}}| < 0.5$

$4 < \text{V0M/(V0M)} < 9$

- HM bias imposed by V0M selection enhances probability to find a high-p_T recoil jet in V0

- Lower enhancement in V0A is caused by asymmetric coverage of V0 arrays

- HM selection biases recoil jets

★ VOM is defined as the number of charged, final state particles within V0A & V0C acceptances

Enhancement of multi-jet events

ALICE preliminary

pp $\sqrt{s} = 13$ TeV

Uncorrected

Anti-k_T charged jets, $R = 0.4$

$20 < p_T^{\text{jet}} < 30$ GeV/c

$A_{\text{ch}} > 0.30$

$|\eta_{\text{jet}}| < 0.5$

Hadron $TT(20,30) \rightarrow TT(8,7)$

MB data

Correlated syst. uncert. MB

HM data $5 < \text{V0M}/\text{V0M} < 9$

Correlated syst. uncert. HM

MB, TT(20,30)

\times HM, TT(20,30)

$4 < \text{V0M}/\text{V0M} < 9$

η_{jet}

λ_{jet} (rod) (rad)

- HM bias imposed by V0M selection enhances probability to find a high-p_T recoil jet in ALICE central barrel w.r.t. MB

- HM trigger \rightarrow bias towards multi-jet final states

ALICE Simulation

pp $\sqrt{s} = 13$ TeV

PYTHIA 8 Monash

Anti-k_T charged jets, $R = 0.4$

Recoil jets: $|\phi_{\text{jet}} - \phi_{\text{jet}}| > \pi/2$

$p_T^{\text{jet}} > 25$ GeV/c

$|\eta_{\text{jet}}| < 0.5$

$\text{V0M}/\text{V0M}$

η_{jet}

λ_{jet} (rod) (rad)

- HM bias imposed by V0M selection enhances probability to find a high-p_T recoil jet in ALICE central barrel w.r.t. MB

- HM trigger \rightarrow bias towards multi-jet final states

ALICE preliminary

pp $\sqrt{s} = 13$ TeV

Uncorrected

Anti-k_T charged jets, $R = 0.4$

$20 < p_T^{\text{jet}} < 30$ GeV/c

$A_{\text{ch}} > 0.30$

$|\eta_{\text{jet}}| < 0.5$

Hadron $TT(20,30) \rightarrow TT(8,7)$

MB data

Correlated syst. uncert. MB

HM data $5 < \text{V0M}/\text{V0M} < 9$

Correlated syst. uncert. HM

MB, TT(20,30)

\times HM, TT(20,30)

$4 < \text{V0M}/\text{V0M} < 9$
Summary

Pb-Pb collisions $\sqrt{s_{NN}} = 5.02$ TeV

- Fully corrected hadron-jet $\Delta \varphi$ distribution for $R = 0.2$ jets in $30 < p_{T,\text{jet}} < 40$ GeV/c
- Suppression with respect to PYTHIA pp data
- Observation of narrowing of $\Delta \varphi$ distribution with respect to pp → signs of radiative corrections?
Summary

Pb-Pb collisions $\sqrt{s_{NN}} = 5.02$ TeV

- Fully corrected hadron-jet $\Delta \varphi$ distribution for $R = 0.2$ jets in $30 < p_{T,\text{jet}} < 40$ GeV/c
- Suppression with respect to PYTHIA pp data
- Observation of narrowing of $\Delta \varphi$ distribution with respect to pp \rightarrow signs of radiative corrections?

pp collisions $\sqrt{s} = 13$ TeV

- Significant suppression and broadening of uncorrected high-particle multiplicity $\Delta_{\text{recoil}}(\Delta \varphi)$ distribution with respect to minimum bias one
Pb-Pb collisions $\sqrt{s_{\text{NN}}} = 5.02$ TeV

- Fully corrected hadron-jet $\Delta\phi$ distribution for $R = 0.2$ jets in $30 < p_{T\text{jet}} < 40$ GeV/c
- Suppression with respect to PYTHIA pp data
- Observation of narrowing of $\Delta\phi$ distribution with respect to pp → signs of radiative corrections?

pp collisions $\sqrt{s} = 13$ TeV

- Significant suppression and broadening of uncorrected high-particle multiplicity $\Delta_{\text{recoil}}(\Delta\phi)$ distribution with respect to minimum bias one
- Qualitatively similar effects are observed in PYTHIA 8 events:
 - High-multiplicity bias → enhance probability to have high-pT recoil jet in V0 acceptance
 - Bias towards multi-jet final state induced by high-multiplicity trigger: increased acoplanarity due to standard QCD effect → obscures possible jet quenching signal
 - Multi-jet final state → generic bias for all measurements in small collision systems
Backup slides
Pb-Pb data $\sqrt{s_{NN}} = 5.02$ TeV

2018 Pb-Pb data sample
- 133M most central events (0-10 %)

Inner tracking system $|\eta| < 0.9$
- Tracking and vertexing

Time projection chamber $|\eta| < 0.9$
- Tracking

V0 arrays
- Centrality determination
- **V0A**: $2.8 < \eta < 5.1$ & **V0C**: $-3.7 < \eta < -1.7$

Jet reconstruction
- Track $p_T > 150$ MeV/c
- Anti-k_T $R = 0.2$ charged-particle jets
- Fiducial cut $|\eta_{\text{Jet}}| < 0.7$