

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Kotliarov Artem, NPI CAS for the ALICE Collaboration The European Physical Society Conference on High Energy Physics 2021

Jet shower in vacuum

- Evolution of highly virtual parton via gluon radiation • Precise understanding in pQCD
- Reference process for nucleus collisions

Introduction

Jet shower in vacuum

Evolution of highly virtual parton via gluon radiation

- Precise understanding in pQCD
- Reference process for nucleus collisions

Jet shower in-medium

- Parton energy loss via medium-induced gluon radiation and elastic collisions \rightarrow jet quenching • Consequences of jet quenching:
 - 1. Yield suppression of high- p_{T} hadrons and jets
 - 2. Modification of jet substructure
 - **3. Medium-induced acoplanarity** \rightarrow semi-inclusive measurements
 - of trigger-jet acoplanarity (trigger: high- p_{T} hadron, γ or Z)

Introduction

Regions of interest

1. Small $|\Delta \varphi - \pi|$

- Hadron-jet acoplanarity broadening: vacuum (Sudakov) radiation and multiple scatterings in medium (L. Chen et al, Phys. Lett. B773 (2017) 672)
- Direct estimation of jet transport coefficient q
- Negative radiative correction → reduction of broadening (B. G. Zakharov, arxiv:2003.10182)

Hadron-jet acoplanarity

Regions of interest

1. Small $|\Delta \varphi - \pi|$

- Hadron-jet acoplanarity broadening: vacuum (Sudakov) radiation and multiple scatterings in medium (L. Chen et al, Phys. Lett. B773 (2017) 672)
- Direct estimation of jet transport coefficient q
- Negative radiative correction \rightarrow reduction of broadening (B. G. Zakharov, arxiv:2003.10182)

2. Large $|\Delta \varphi - \pi|$

Hadron-jet acoplanarity

• Single hard scattering \rightarrow large angle scattering of parton on QGP quasi-particles • Probe short distance quasi-particle structure of QGP (F. D'Eramo, Rajagopal, Y. Yin, JHEP 01 (2019) 172)

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Cross section for

trigger hadron production

Semi-inclusive measurements provide:

- Unbiased jet population

 \rightarrow essential for precise acoplanarity measurements

Hadron-jet acoplanarity via semi-inclusive measurements

Per trigger normalized yield of jets recoiling from high- p_{T} hadron

 \rightarrow Calculable in pQCD $p_{T,h} \in TT$

Differential cross section for coincidence production of trigger hadron and recoil jet

• Access to low p_{τ} jets \rightarrow more sensitive to medium-induced broadening • Data driven approach for removal of uncorrelated background yield

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE EPS-HEP 2021 Kotliarov Artem

ALI-PERF-334520

• Jets recoiling from a high- p_{T} trigger hadron

• Data-driven approach to remove uncorrelated background yield

$$\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}^{\text{AA}}} \frac{d^2 N_{\text{jet}}^{\text{AA}}}{dp_{\text{T,jet}}^{\text{ch}} d\eta_{\text{jet}}} \bigg|_{p_{\text{T,trig}} \in \text{TT}_{\text{Sig}}} - c_{\text{Ref}} \cdot \frac{1}{N_{\text{trig}}^{\text{AA}}} \frac{d^2 N_{\text{jet}}^{\text{AA}}}{dp_{\text{T,jet}}^{\text{ch}} d\eta_{\text{jet}}} \bigg|_{p_{\text{T,trig}} \in \text{TT}_{\text{Ref}}}$$

Hadron-jet acoplanarity: Δ_{recoil} observable

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

$$\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}^{\text{AA}}} \frac{d^2 N_{\text{jet}}^{\text{AA}}}{dp_{\text{T,jet}}^{\text{ch}} d\eta_{\text{jet}}} \bigg|_{p_{\text{T,trig}} \in \text{TT}_{\text{Sig}}} - c_{\text{Ref}} \cdot \frac{1}{N_{\text{trig}}^{\text{AA}}} \frac{d^2 N_{\text{jet}}^{\text{AA}}}{dp_{\text{T,jet}}^{\text{ch}} d\eta_{\text{jet}}} \bigg|_{p_{\text{T,trig}} \in \text{TT}_{\text{Ref}}}$$

Hadron-jet acoplanarity: Δ_{recoil} observable

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

ALI-PREL-353023

- Limited statistics
- Uncorrected for p_{τ} and angular smearing
- Anti- k_{τ} charged-particle jets R = 0.4 with $p_{\tau} \in (40, 60)$ GeV/c
- Fit function:

$$f(\Delta \varphi) = p_0 \times e^{(\Delta \varphi - \pi)/\sigma} + p_1$$

- Suppression of Pb-Pb data comparing to PYTHIA pp
- No evidence for medium-induced acoplanarity within uncertainties

Results: Run 1 Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

ALI-PREL-353019

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Results: Run 2 Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

- **x9 larger statistics** with respect to Run 1 data
- Anti- k_{τ} charged-particle jets R = 0.2 with $p_{\tau} \in (30, 40)$ GeV/c
- Fully corrected hadron-jet $\Delta \varphi$ distribution

• Recoil jet yield suppressed compared to pp PYTHIA data • Indication of narrowing of acoplanarity distribution in $30 < p_{T, jet}^{ch} < 40 \text{ GeV/}c$

Radiative corrections?

B. G. Zakharov, arxiv:2003.10182

High-particle multiplicity pp collisions

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE **Kotliarov Artem** EPS-HEP 2021

Collective flow

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Collective flow

Azimuthal correlation between two particles pp 7 TeV

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Collective flow

Azimuthal correlation between two particles pp 7 TeV

Jet quenching in high particle multiplicity pp collisions

 $R_{\Lambda\Lambda}$ nuclear modification factor measurements

$$R_{\rm AA} = \frac{{\rm d}^2 N_{\rm AA} / {\rm d}y {\rm d}}{\langle T_{\rm AA} \rangle {\rm d}^2 \sigma_{\rm pp}^{\rm INEL} / }$$

undefined Glauber scaling factor for

high particle multiplicity pp

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

 p_{T} $dydp_{T}$

Collective flow

Azimuthal correlation between two particles pp 7 TeV

Jet quenching in high particle multiplicity pp collisions

Semi-inclusive measurements $R_{\Delta\Delta}$ nuclear modification factor measurements $\frac{1}{\sigma^{AA \to h+X}} \frac{d^2 \sigma^{AA \to h+jet+X}}{dp_{T, jet}^{ch} d\eta_{jet}}$ $p_{\mathbf{T}}$ $dydp_{T}$

$$R_{\rm AA} = \frac{{\rm d}^2 N_{\rm AA} / {\rm d}y {\rm d}y}{\langle T_{\rm AA} \rangle {\rm d}^2 \sigma_{\rm pp}^{\rm INEL} / \langle T_{\rm AA} \rangle {\rm d}^2 \sigma_{\rm pp}^{\rm INEL} / \langle T_{\rm AA} \rangle {\rm d}y {\rm d}y {\rm d}y}$$

undefined Glauber scaling factor for

high particle multiplicity pp

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

$$\Big|_{h \in TT} = \frac{1}{\sigma^{pp \to h+X}} \frac{d^2 \sigma^{pp \to h+jet+X}}{dp_{T, jet}^{ch} d\eta_{jet}} \times \frac{\langle T_{AA} \rangle}{\langle T_{AA} \rangle} \Big|_{h}$$

Glauber scaling factors $\langle T_{\Delta\Delta} \rangle$ cancel identically

- Data from 2016 2018
- Online triggers based on VO arrays:
 - Minimum bias (MB): 0.098 pb^{-1}
 - **High-multiplicity** (HM): 13 pb⁻¹

pp data $\sqrt{s} = 13$ TeV

Minimum bias distribution \rightarrow

ALI-PREL-339893

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

• Offline event activity (EA) selection:

VOM = VOA + VOC \rightarrow sum of signals

Scaled multiplicity V0M/(V0M)

 $\langle VOM \rangle$ - mean of MB distribution

• Anti- $k_{\tau} R = 0.4$ charged-particle recoil jets

Uncorrected data

- Estimated uncertainty from tracking efficiency
- Significant suppression and broadening of HM data

when compared to MB

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Acoplanarity versus event activity: uncorrected data and PYTHIA 8

Uncorrected data

11

• Anti- $k_{T} R = 0.4$ charged-particle recoil jets

Uncorrected data

- Estimated uncertainty from tracking efficiency
- Significant suppression and broadening of HM data when compared to MB
- **PYTHIA 8 simulation**
 - Does not account for jet quenching
 - Exhibits qualitatively similar suppression effect as real data

Acoplanarity versus event activity: uncorrected data and PYTHIA 8

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

Uncorrected data

PYTHIA 8 particle level

11

Recoil jet pseudorapidity distribution vs. event activity

ALI-SIMUL-347697

- HM bias imposed by VOM selection enhances probability to find a high- p_{τ} recoil jet in VO
- Lower enhancement in VOA is caused by asymmetric coverage of VO arrays
- HM selection biases recoil jets
- **X** VOM is defined as the number of charged, final state particles within VOA & VOC acceptances

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

PYTHIA 8 simulation

12

Recoil jet pseudorapidity distribution vs. event activity

ALI-SIMUL-347697

- HM bias imposed by VOM selection enhances probability to find a high- p_{T} recoil jet in VO
- Lower enhancement in VOA is caused by asymmetric coverage of VO arrays
- HM selection biases recoil jets
- VOM is defined as the number of charged, final state particles within VOA & VOC acceptances \star

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

PYTHIA 8 simulation

Number of high- p_{T} recoil jet vs. event activity

ALI-SIMUL-347697

- to find a high- p_{T} recoil jet in VO
- HM selection biases recoil jets

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

PYTHIA 8 simulation

ALI-SIMUL-347697

- to find a high- p_{T} recoil jet in VO
- HM selection biases recoil jets
- \star

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE EPS-HEP 2021 **Kotliarov Artem**

PYTHIA 8 simulation

Pb-Pb collisions $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- Fully corrected hadron-jet $\Delta \varphi$ distribution for R = 0.2 jets in $30 < p_{Tiet} < 40$ GeV/c
- Suppression with respect to PYTHIA pp data
- Observation of narrowing of $\Delta \varphi$ distribution with respect to pp \rightarrow signs of radiative corrections?

Summary

Kotliarov Artem EPS-HEP 2021

Pb-Pb collisions $\sqrt{s_{NN}} = 5.02$ TeV

- Fully corrected hadron-jet $\Delta \varphi$ distribution for R = 0.2 jets in $30 < p_{Tiet} < 40$ GeV/c
- Suppression with respect to PYTHIA pp data
- Observation of narrowing of $\Delta \varphi$ distribution with respect to pp \rightarrow signs of radiative corrections?

pp collisions $\sqrt{s} = 13$ TeV

• Significant suppression and broadening of uncorrected high-particle multiplicity $\Delta_{recoil}(\Delta \varphi)$ distribution with respect to minimum bias one

Summary

EPS-HEP 2021 Kotliarov Artem

Pb-Pb collisions $\sqrt{s_{NN}} = 5.02$ TeV

- Fully corrected hadron-jet $\Delta \varphi$ distribution for R = 0.2 jets in $30 < p_{Tiet} < 40$ GeV/c
- Suppression with respect to PYTHIA pp data
- Observation of narrowing of $\Delta \varphi$ distribution with respect to pp \rightarrow signs of radiative corrections?

pp collisions $\sqrt{s} = 13$ TeV

- Significant suppression and broadening of uncorrected high-particle multiplicity $\Delta_{recoil}(\Delta \varphi)$ distribution with respect to minimum bias one
- Qualitatively similar effects are observed in PYTHIA 8 events:
 - High-multiplicity bias \rightarrow enhance probability to have high-pT recoil jet in VO acceptance Ο
 - Bias towards multi-jet final state induced by high-multiplicity trigger: increased acoplanarity due to standard \bigcirc
 - QCD effect \rightarrow obscures possible jet quenching signal
 - Multi-jet final state \rightarrow generic bias for all measurements in small collision systems

Summary

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE EPS-HEP 2021 Kotliarov Artem

Backup slides

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE

2018 Pb-Pb data sample

- 133M most central events (0-10 %)
- Inner tracking system $|\eta| < 0.9$
 - Tracking and vertexing
- Time projection chamber $|\eta| < 0.9$
 - Tracking
- **VO** arrays
 - Centrality determination
 - VOA: 2.8 < η < 5.1 & VOC: -3.7 < η < -1.7
- Jet reconstruction
 - Track $p_{\tau} > 150 \text{ MeV/}c$
 - Anti- $k_{\tau} R = 0.2$ charged-particle jets
 - Fiducial cut $|\eta_{\text{Jet}}| < 0.7$

Pb-Pb data $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Measurements of jet quenching via hadron+jet correlations in Pb-Pb and high-particle multiplicity pp collisions with ALICE Kotliarov Artem EPS-HEP 2021

