Simulations of charged hadron and charmed meson production in **Pb+Pb collisions** at $\sqrt{s_{NN}} = 5.02$ **TeV with HYDJET++ generator**

STATE UNIVERSITY

J. Bielčík¹, L. Bravina², I. Lokhtin³, G. Eyyubova³, V. Korotkikh³, S. Petrushanko³, A. Snigirev³, E. Zabrodin^{2,3}, J. Štorek^{1*}

¹Czech Technical University in Prague, ²University of Oslo, ³Lomonosov Moscow State University

ABSTRACT

HYDJET++ is a Monte Carlo event generator merging parametrized soft part inspired by hydrodynamics with hard part containing jets. It has been successful to describe particle production in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV energy. In this poster, particle spectra and collective flow for the top LHC energy $\sqrt{s_{NN}} = 5.02$ TeV Pb+Pb collisions are presented for the first time. Specifically, the HYDJET++ model version 2.4 is used to simulate spectra of charged particles, D^0 and J/ψ mesons and related v_2 and v_3 azimuthal flow harmonics. The particle spectra and flow harmonics are studied in different centrality bins ranging from 0-10% up to 20-30% centrality in midrapidity region for charged particles and D^0 mesons. The simulated results are compared to experimental data from the ALICE, ATLAS and CMS experiment in order to tune the HYDJET++ generator to get the most optimal agreement with the data.

MOTIVATION

• In central ultra-relativistic heavy ion collisions, quark-gluon plasma (QGP), a novel phase of matter where quarks and gluons are deconfined, can be observed [1]

J/ψ MESON

• HYDJET++ parameter γ_c accounts for deviations Fig. 1: J/ψ yield transverse momentum spectrum of charm multiplicity from the complete thermal

- QGP behaves as an almost perfect fluid and exists only for a short time (~ 10^{-20} s) during a collision
- The properties of the QGP can be deduced from energies and momenta of the outgoing particles
- Modified yields of particle species with regards to a proton-proton collision, collective behavior of nucleons participating in the collision and jet quenching can be recognized as **phenomena of QGP** • Jet quenching is modification of a jet caused by the QGP medium
- In time evolution of a collision, transition between QGP and hadron gas happens at critical temperature, $T_{\rm c}$, and at chemical freeze-out temperature, $T_{\rm ch}$, particle species stop to change and finally, at **thermal freeze-out temperature**, T_{th}, momenta of all the particles are set

COLLECTIVE FLOW

- Particle production is anisotropic with respect to the reaction plane which is defined by the beam axis z and impact parameter \vec{b}
- Particle production in azimuthal angle φ can be decomposed into Fourier series

• v_2 and v_3 are called elliptic and triangular flows, respectively

- equilibrium value
- Parameter $\gamma_c = 15$ was tuned to achieve the best match with the experimental $J/\psi p_{\rm T}$ spectrum in 0-10% centrality range (Fig. 1)
- Underestimation of the experimental data in $4 < p_{\rm T} < 6$ GeV/c region is observed
- The underestimation was slightly eliminated by rising the maximal fluid flow transverse rapidity at thermal freeze-out $\rho_{\rm max}$ (Fig. 2)
- Qualitatively **good description of** v_2 is observed in 0-10% centrality range regardless the $\rho_{\rm max}$ parameter (Fig. 3)

Fig. 2: Comparison of HYDJET++ model and experimental data for two ρ_{max} values

J/ψ, 0-10%, 2.5<y<4, Pb+Pb@√s_{NN}=5.02 TeV, γ_c=15

J/ ψ , 0-10%, 2.5<y<4, Pb+Pb@ $\sqrt{s_{_{NN}}}$ =5.02 TeV, $\rho_{_{max}}$ =0.60

Fig. 3: Elliptic flow of J/ψ

J/ψ, 0-10%, 2.5<y<4, Pb+Pb@√s_{NN}=5.02 TeV

HYDJET++ MODEL

- The HYDJET++ merges hydro-inspired blast wave parameterization (soft) with jet quenching (hard)
- In soft part, hadrons are generated at chemical freeze-out hypersurface and thermal equilibrium is assumed during the thermal emission
- Hard part is based on PYQUEN (PYthia QUENched) partonic energy loss model [2] which employs jet quenching in PYTHIA [3] generated jet events
- Production of charged hadrons and charmed mesons was successfully described in Au+Au collisions at $\sqrt{s_{\text{NN}}} = 200 \text{ GeV} [4, 5]$ and in Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}$ energy [6]
- In Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV energy, correct model description has been achieved also for elliptic flow of charmed mesons [5] and triangular flow of different hadrons [7]

Cimulation normators					
Simulation parameters	System	$\sqrt{s_{\rm NN}}$ [TeV]	P		
 Different thermal freeze-out temperatures T_{th} need to be 	Διι±Διι				
used for correct description of	Au+Au	0.2	Ľ		
charged hadrons h^{\pm} , open	DhiDh	276	ŀ		
charm D^0 mesons and J/ψ	PD+PD	2.70			
meson at different collision		F 0.2	ł		
table	PD+PD	5.02			
		1			

System	$\sqrt{s_{ m NN}}$ [TeV]	Particle	$T_{\rm th}$ [MeV]
Au+Au	0.2	h^{\pm}	100
	0.2	$D^0, J/\psi$	165
Pb+Pb	276	h^{\pm}, D^0	105
	2.70	J/ψ	165
Pb+Pb	E 02	h^{\pm}, D^0	105
	5.02	J/ψ	165

CHARGED HADRONS h^{\pm}

• The same set of simulation parameters has been used for both charged hadrons and D^0 mesons • v_2 and v_3 have been simulated by experiment adapted scalar product (SP) method

h[±], Pb+Pb@√s_{NN}=5.02 TeV

	4000											Data: PLB 772 (2017) 567	
_	4000	_ '	I	I		I	I	I		I	1	1	HYDJET++ 0-5%
ð		_											HYDJET++ 5-10%

h[±], 20-30%, Pb+Pb@ √s_{NN}=5.02 TeV, |η|<2.5

Data: EPJC 78 (2018) 997 v₂ HYDJET++

D^0 MESONS

• Parameter $\gamma_c = 15$ used according to the J/ψ tuning

• Transverse momentum $p_{\rm T}$ distribution is described well by HYDJET++ in 0-10% centrality bin

• In 10-30% centrality, HYDJET++ generally follows the trend of the **elliptic flow** experimental data but overestimation in $4 < p_T < 6$ GeV/c region is observed

CONCLUSIONS

- Raising collision energy from $\sqrt{s_{NN}} = 2.76$ TeV to $\sqrt{s_{NN}} = 5.02$ TeV does not have a significant impact on the thermal freeze-out temperature T_{th} which is the same value for h^{\pm} and D^0 meson and different value for J/ψ
- Correct description of charm meson spectra has been achieved by tuning charm enhancement parameter $\gamma_{\rm c} = 15$
- Elliptic flow of J/ψ is described qualitatively well regardless the maximal fluid flow transverse rapidity

• **Pseudorapidity** η distribution is described well by HYDJET++ up to 30-40% centrality bin • HYDJET++ correctly reproduces elliptic and triangular flow of charged hadrons in semi-central 20-30% events in $0 < p_T < 4$ GeV/c region and underestimates the data in $4 < p_T < 10$ GeV/c region

at thermal freeze-out ho_{\max} parameter

REFERENCES

[1] R. Pasechnik and M. Šumbera, Universe 3 (2017) 7 [2] I. P. Lokhtin, A. M. Snigirev, Eur. Phys. J. C, 45 (2006) 211 [3] T. Sjöstrand et al., J. High Energy Phys., 05 (2006) 26 [4] I. P. Lokhtin et al., Comput. Phys. Commun., 180 (2019) 779 [5] I. P. Lokhtin et al., J. Phys. Conf. Ser., 270 (2011) 012060 [6] I. P. Lokhtin et al., J. Phys. G: Nucl. Part. Phys., 43 (2016) 125104 [7] J. Crkovska et al., Phys. Rev. C 95 (2017) 014910

ACKNOWLEDGEMENT

The work was supported from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16_019/0000778 and by the grant LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.

EUROPEAN UNION European Structural and Investment Funds **Operational Programme Research**, **Development and Education**

FACULTY OF **NUCLEAR SCIENCES AND PHYSICAL** ENGINEERING **CTU IN PRAGUE**

* speaker, storejar@fjfi.cvut.cz

This poster was presented at European Physical Society conference on high energy physics 2021