Measurements of long-range azimuthal anisotropy in photonuclear collisions with ATLAS

Blair Daniel Seidlitz University of Colorado Boulder for the ATLAS collaboration

EPS-HEP, July 29th 2021

Origin of azimuthal anisotropy

It has been largely established that hydrodynamic properties of the QGP governs many of the emergent phenomenon in heavy ions

Initial spatial anisotropy \rightarrow hydro \rightarrow final momentum anisotropy

Azimuthal anisotropy

Long-range (in η) azimuthal anisotropy leads to the "**ridge**" in the 2-particle correlation

Clear collectivity signatures in many system sizes

- Nearside ridge present in 2-particle correlation
- Precise measurements of v_n
- Multi-particle correlations \rightarrow global correlation

arXiv:1305.0609

arXiv:1510.03068

Which small systems do we know flow?

3

Which small systems do we know flow?

Which small systems do we know flow?

Photons in heavy ion collisions

Lorentz contracted electromagnetic fields of moving charges can be treated as a flux of photons.

Equivalent photon approximation (EPA)

- EM field are a flux of quasi-real photons
- Developed by <u>Fermi</u>, <u>Weizäcker</u>, and <u>Williams</u>
- Implemented in STARLIGHT
- Differences with QED calculations

E _γ proj. frame	E _γ lab frame	$W_{\gamma N}$
1/(2*1.2 A ^{1/3} fm)	γ/(1.2 A ^{1/3} fm)	$\sqrt{4E_{\gamma}E_{N}}$
30 MeV	160 GeV	1.7 TeV
30 MeV	6 GeV	50 GeV

Ultra-peripheral collisions at the LHC

Vector meson quantum fluctuation

$$\Delta t \approx \frac{\hbar}{M_V c^2}$$

Photo-nucleus interactions

- Bare photon + vector meson wave function
- QCD diffractive vector meson production γ + A \rightarrow A* + V
- Non-diffractive $\gamma + A \rightarrow X$

Pure EM interactions

- For example, $\gamma\gamma \rightarrow l^+l^-$
- Precision tests of EPA and QED calculations of photon flux
- Active area of research
 - *b* dependence of photon $p_{\rm T}$
 - Photon polarization
 <u>arXiv:2103.16623</u>

collision time

$$\Delta t \simeq b/(\gamma v)$$

Direct γA collisions Photon couples directly to nuclear parton

+y J Rapidity -y

Direct γA collisions Photon couples directly to nuclear parton

+y | Rapidity | -y

- Single-sided nuclear breakup "OnXn" (zero-degree calorimeter ZDC)
- Rapidity gaps

Minimum bias selection includes both but is dominated by resolved events.

"High"-multiplicity photonuclear collisions

"High"-multiplicity photonuclear collisions

Photonuclear rapidity gaps $\Sigma_v \Delta \eta$ and N_{ch}

Photonuclear rapidity gaps $\Sigma_v \Delta \eta$ and N_{ch}

Photonuclear events have large rapidity gaps in the photon-going direction and a steeply falling multiplicity distribution.

Photonuclear event properties

Several data-MC comparisons included in our results

arXiv:2101.10771

Photonuclear event properties

d*N*_{ch}/dη in γA collisions

 $dN_{ch}/d\eta$ of photonuclear events - very similar shape with $N_{ch} \ge 10$ MC comparison show 200 GeV to 1 TeV CM energy $(W_{\gamma N})$ $W_{\gamma N}(N_{ch})$ trend comports with N_{ch} trend in data $dN_{ch}/d\eta$ arXiv:2101.10771

10

2-particle correlation of charged tracks

No clear nearside ridge

Away-side correlation

Momentum conservation

Jets

Termed "nonflow" Not collective phenomenon

Need to remove nonflow

arXiv:2101.10771

Non-flow removal in yA correlations

12

Non-flow removal in vA correlations

After nonflow subtraction clear $\cos(2\Delta \phi)$ modulation

arXiv:2101.10771

12

v_n in photonuclear collisions

Significant nonzero v_2 and v_3 in photonuclear collisions

Flat $v_2(N_{ch})$ within statistical precision

v_n in photonuclear collisions

Significant nonzero v_2 and v_3 in photonuclear collisions

Flat *v*₂(*N*_{ch}) within statistical precision

Changing *pp* to $0.4 < p_T < 2.0$ is predicted to lower *pp* v_2 by ~10% which does not lead to agreement between *pp* and γA

Consistent v_3 between γA and pp given large uncertainties on both

$v_2(p_T)$ comparison with pp and p+Pb

Similar trend in $v_2(p_T)$ as other hadronic systems.

Similar low- p_T behavior as pp and p+Pb but systematically lower.

High- $p_T v_2$ is falling to large negative values (see backup) which is from the oversubtraction of nonflow. This effect is present in *pp* but is larger and sets in at lower p_T in γA (ATLAS-CONF-2020-018)

$v_2(p_T)$ comparison with CGC calc.

Compared to Color Glass Condensate (CGC) framework <u>calculation of $\gamma A v_2(p_T)$ with</u> $Q_s^2 = 5 \text{ GeV}^2$ and $B_P^2 = 25 \text{ GeV}^2$

Model is consistent with data at low- p_{T}

Theory uncertainty from hadron fragmentation

arXiv:2008.03569

Conclusions

Results

Photonuclear v_n has a similar order of magnitude and trends as other previously measured hadronic systems

Intuitive property of hadronic-like photonuclear collisions (photon \rightarrow vector meson).

Theory

Compared to CGC model and are interested in models which include **final-state effects**.

Future study

Difference with *pp* might be a consequence of (and further studied by) CM energy, CM-frame rapidity acceptance, decorrelations effects, and multi-particle correlations

e.g.

Thank you

CGC model comparison

Color Glass Condensate model calculation containing **initial-state correlations** which gives rise to nonzero v_2

Correlated color domain size is ~ 1/Q_s arXiv:2008.03569

- Larger number of domains struck →lower v₂
- Quasi-real photon is predicted to have large B_P

CGC model comparison

size is ~ $1/Q_{s}$

~ 0.3 > Template Fit Color Glass Condensate model ATLAS Preliminary Pb+Pb, 1.0 μb⁻¹ - 1.7 nb⁻¹ $2.0 < |\Delta \eta| < 5.0$ calculation containing initial-state 0.25 $\approx p + Pb, N_{ch}^{rec} \ge 60$ $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV, 0nXn $\Sigma_{\gamma} \Delta \eta$ > 2.5, 20 < $N_{
m ch}^{
m rec} \leq$ 60 correlations which gives rise to • Photonuclear 02 nonzero V_2 \blacksquare CGC, $Q_s^2 = 5 \text{ GeV}^2$, $B_p^2 = 25 \text{ GeV}^{-2}$ --- CGC, $Q_{p}^{2} = 5 \text{ GeV}^{2}$, $B_{p}^{2} = 6 \text{ GeV}^{-2}$ 0.15 A (nuclear target) 0.1 0.05 B_{P} (projectile size) 2 3 Δ *p*_{_} [GeV] Similar calculations describing *p*+Pb (arXiv:1808.09851) • Difference in v_2 is a result of a **Correlated color domain** smaller B_{ρ}^{2} for a proton where

 $B_n^{\gamma} \sim$

arXiv:2101.10771

Origin of yA ridge

Final state effects

Initial-state geometry \rightarrow hydro \rightarrow final-state anisotropy has described simultaneously many systems

- In small systems the initial geometry is largely determined by fluctuation
- We ran a constituent quark model, 2 vs 3 quarks on Pb and found a very modest difference in ε_2 and ε_3 .
- In that sense, one might expect similar results for p+Pb and rho+Pb at fixed multiplicity.
- A more complete calculation is needed also considering the bare photon portion of the wave function, color fluctuations, possible correlations between the impact parameter and photon energy etc.

Initial state correlation

Less success in the description of a diverse set of observables.

• A schematic CGC calculation is discussed in the next slide.

Gap definition (detector roll-out)

Event Selection: $\Sigma \Sigma_{\gamma} \Delta \eta_{gap} > 2.5$

Comparison to DPMJET-III

- DPMJET-III predicts the photon energy changes by about 1-2 standard deviations over the multiplicity range of the measurement and a doubling of the mean $W_{\gamma N}$ for 10 to 60 N_{ch}^{rec} .
- Large difference between measured $v_{n,n}$ before and after template nonflow subtraction for data and DPMJET-III.
- Small negative $v_{2,2}$ after template fit

DPMJET-III 2PC example

More jet-like away side in DPMJET-III than in data. This produces the larger unsubtracted $v_{2,2}$ seen on the previous slide. Small remaining modulation after nonflow subtraction seen in the lower panel. DPMJET-III is of limited use in modeling the soft correlations in photonuclear events.

CERN-EP-2020-246

Purity of the photonuclear selection

- A two-component fit was performed (signal MC) + (background MC) to data distributions to determine the purity.
- The N_{ch} and $\Sigma_{\gamma} \Delta \eta$ distributions were used.
- A conservative approach was taken and the worst purities were used to assess possible effects.
- A pp Δφ correlation with the same selections was subtracted (according to the bins purity) from the photonuclear data as a systematic variation and the sensitivity is included in the final result.

Factorization v₂(N_{ch})

 $v_2(N_{ch})$ shows insensitivity to associated particle p_T range. This is consistent with a hydrodynamic paradigm where particle anisotropies are generated from a single-particle flow vector for all p_T .

Rapidity gap comparison to MC

- DPMJET-III γ+A
 - Photon flux generated by STARLIGHT
 - DPMJET simulates γA collision
- DPMJET-III γ+p
 - Utilizes a Pb+Pb photon flux from STARLIGHT
 - Serves as a comparison to PYTHIA8
- PYTHIA8 γ+p
 - Reweighted to STARLIGHT flux
- HIJING Pb+Pb background MC

MC normalized to data in control regions

Qualitative agreement with MCs, PYTHIA being the most compatible **Indicates high purity \gamma+A sample for \Sigma_{\gamma}\Delta\eta > 2.5** arXiv:2101.10771