Measurement of light-by-light scattering in ultra-peripheral Pb+Pb collisions with the ATLAS detector

Mateusz Dyndal (AGH UST Krakow), on behalf of the ATLAS collaboration [based on JHEP 03 (2021) 243]

POLISH RETURNS

Introduction

- **Boosted charged-particles** are intense source of photons
- Quasi-real photon flux
 - E_{max} ~γ/R ~2 TeV (protons @LHC) ~80 GeV (Pb ions @LHC)

detection at small forward angles in the ZDC. The ZDCs [31,32] are

pendicular to the beam direction). The

continued and extended by st heavy ion collisions (UPCs) at teractions of two heavy nucles cleus) in which a nucleus en that interacts with the other nu collisions have the distinct f emitting nucleus either does no a few neutrons through Coulo substantial rapidity gap in the kinematics can be readily ide LHC detectors, ATLAS and consider the feasibility of stud tions pioneered at HERA: pa diffraction. The third, quarkon cussed previously [4, 5, 6]. It AA scattering can extend the characterized by $\sqrt{s_{\gamma N}}$, by all 9) affateular, investigate the or

FIG. 1: Diagram of dijet producti where the photon carries momen

Experimental approach

Exclusive final states \rightarrow **Exclusivity requirements** are essential

- Many sub-detectors available in ATLAS \bullet
- **Calorimeters (ZDC)**

Outgoing ions escape into beampipe, neutrons from (EM) dissociation can be tagged by **Zero Degree**

LbyL ($yy \rightarrow yy$) scattering in PbPb

- Rare O(α_{EM}⁴) process
 - Sensitive to BSM effects
- Previous LHC measurements:
 - 2015 data: ATLAS & CMS (~4σ evidence)
 - 2018 data: ATLAS (8.2σ observation)

• The new analysis [JHEP 03 (2021) 243] covers:

- Exploration of full Run-2 Pb+Pb dataset
- Differential cross-section measurement
- Search for axion-like particles

Original idea: PRL 111 (2013) 080405

ATLAS, <u>Nature Phys. 13 (2017) 852</u> CMS, <u>PLB 797 (2019) 134826</u> ATLAS, <u>PRL 123 (2019) 052001</u>

Pb(*)

Pb(*)

Analysis selection

- Good-quality data in the detector (2.2/nb of Pb+Pb data from 2015+2018 runs)
- Trigger based on low activity in the calorimeter
 - great improvement of trigger efficiency at low photon E_T in 2018 comparing to 2015
- Detectors are pushed to the limits
 - Very low E_T photons (**E_T > 2.5 GeV**, $|\eta| < 2.37$)
 - Invariant diphoton mass $M(\gamma\gamma) > 5 \text{ GeV}$
 - Track veto ($p_T > 100 \text{ MeV}$) + pixel track veto ($p_T > 50 \text{ MeV}$)
- Back-to-back topology
 - p_T(γγ) < 1 GeV
 - Acoplanarity: Aco = $1 |\Delta \phi \gamma \gamma| / \pi < 0.01$

		-	
		-	
		_	
		_	
		-	
		_	
		_	
		-	
		-	
		_	
		_	
		-	
		-	
		_	_
		_	
		_	
		-	

Detector calibration

- Photon reconstruction efficiency
 - \bullet
- Identification efficiency \rightarrow optimised for low-ET photons
 - $yy \rightarrow II$ events with FSR are used for data-driven efficiency measurement
- Differences between data and MC included in dedicated corrections

Use hard bremsstrahlung photons from $yy \rightarrow ee$ to extract efficiency in data and MC simulation

Detector calibration

• Exclusive dielectron events ($\gamma\gamma \rightarrow ee$) are also used to validate EM calorimeter response

Other checks with exclusive dielectrons

Overall yield & kinematic distributions in reasonable agreement with MC simulation

Background processes

- Several background sources considered:
 - $\gamma\gamma \rightarrow ee$
 - Suppressed with track and pixel-track vetos
 - Remaining contribution evaluated using control regions
 - Diffractive/CEP $gg \rightarrow \gamma\gamma$
 - Fit to Aco shape after relaxing Aco < 0.01 (template from MC)
 - other processes e.g. $\gamma\gamma \rightarrow qq$, $\pi^0\pi^0$, $\pi+\pi$ -, $\gamma\gamma \rightarrow ee\gamma\gamma$, ..., are found to be negligible

Systematic uncertainties and control distributions

Source of uncertainty	Detector correction (C)	GeV
	0.263 ± 0.021	nts /
Trigger efficiency	5%	Eve
Photon reco. efficiency	4%	
Photon PID efficiency	2%	
Photon energy scale	1%	
Photon energy resolution	2%	
Photon angular resolution	2%	
Alternative signal MC	1%	
Signal MC statistics	1%	
Total	8%	

• Cf with data stat. uncertainty of **14%** and impact of background uncertainty (7%)

light-by-light event candidate, M(yy)=28 GeV

Results

- Cross section measurements
 - Fiducial and differential $(\mathbf{m}_{\gamma\gamma}, |\mathbf{y}_{\gamma\gamma}|, |\mathbf{cos}(\theta^*)|, \mathbf{average } \mathbf{p}_{T^{\gamma}})$ cross sections, comparison with SuperChic 3 MC [Harland-Lang et al. EPJC 79 (2019) 1, 39]
 - Integrated fiducial cross section about 1.7σ higher than the predictions [Klusek-Gawenda et al. PRC 93 (2016) 044907, Harland-Lang et al. EPJC 79 (2019) 39]

$$\sigma_{\rm fid} = \frac{N_{\rm data} - N_{\rm bkg}}{C \times \int L {\rm d}t}$$

 $\sigma_{\rm fid} = 120 \pm 17 \,(\text{stat.}) \pm 13 \,(\text{syst.}) \pm 4 \,(\text{lumi.}) \,\text{nb}$

Search for Axion-like particles (ALPs)

- Idea: search for new $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ resonances
 - Background includes SM LbyL, CEP γγ and ee
 - ALP signal generated with STARlight MC for various ma
- No significant deviation from SM predictions observed \rightarrow limits on $\sigma_{\gamma\gamma \rightarrow a \rightarrow \gamma\gamma}$ are extracted
 - Limits on σ are cast into limits on any coupling $(1/\Lambda_a)$
 - Most stringent ALP constraints ($6 < m_a < 100$ GeV) to date

10⁻²

10⁻³

10⁻¹

10⁰

10¹

10²

Summary

- Light-by-light scattering $(yy \rightarrow yy)$ is a unique process that can be probed in ultraperipheral collisions at the LHC
- New ATLAS measurement exploits full Run-2 Pb+Pb dataset (2.2/nb) and photons down to $E_T = 2.5$ GeV
- Integrated fiducial and differential cross sections are measured
 - In fair agreement with theory predictions, though 1.7σ data/theory difference is intriguing...
- Search for new phenomena in $yy \rightarrow yy$ scattering
 - Resonant production of axion-like particles (ALPs)
 - No significant deviation from SM predictions is observed
 - Most stringent ALP constraints ($6 < m_a < 100$ GeV) to date are obtained
 - Excellent prospects for new searches with Run 3+4 data \rightarrow

arXiv:1812.06772

14

Theoretical calculations (a simplified view)

- The cross section for AA ($\gamma\gamma$) \rightarrow AA X process can be calculated using:
 - (1) Number of equivalent photons (EPA) by integration of relevant EM formfactors:

$$\frac{Z^2 \alpha_{em}}{\pi^2 \omega} \left| \int \mathrm{d}q_\perp q_\perp^2 \frac{F(Q^2)}{Q^2} J_1(bq_\perp) \right|^2$$

(2) EW $\gamma\gamma \rightarrow X$ (elementary) cross section:

$$\sigma_{A_1A_2(\gamma\gamma)\to A_1A_2X}^{\text{EPA}} = \iint d\omega_1 \ d\omega_2 \ n_1($$

(3) Extra absorptive corrections (when the ions/protons overlap in impact parameter space:

 $n_1(\omega_1) \ n_2(\omega_2) \rightarrow$

$$\int \int n(\vec{b}_1, \omega_1) n(\vec{b}_2, \omega_2) P_{non-inel}(|\vec{b}_1 - \vec{b}_2|) d^2 \vec{b}_1 d^2 \vec{b}_2$$

