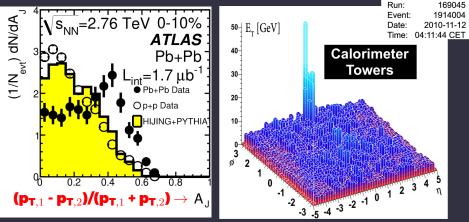

Measurements of Jet Suppression with The ATLAS Detector

Christopher McGinn EPS 2021

University Colorado Boulder

Producing Quark Gluon Plasma

Still via Ann.Rev.Nucl.68 (2018)

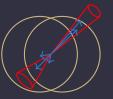

Full video via Yen-jie Lee, Wit Busza, and Andre Yoon

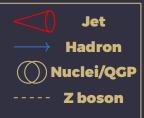
1. Lorentz-contracted nuclei inbound

- 2. Initial collision; Hard-probes formed here
- 3. After some formation time, Quark Gluon Plasma (QGP)
- 4. After some longer time, freezeout and hadronization
- What happens to jets in the QGP?

Jets in QGP

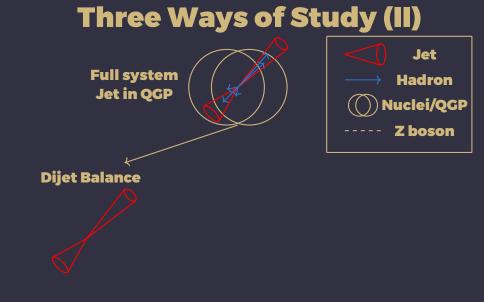
PRL 105 (2010) 252303

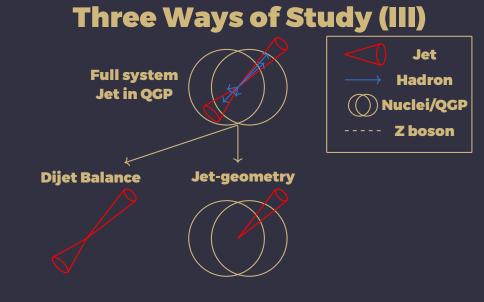

- Observe significant modification to dijet asymmetry (A_J)!
- Interpret as jet energy 'lost' to medium interactions

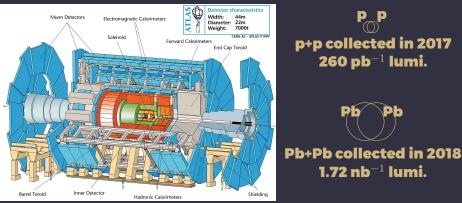


ATLAS

Three Ways of Study (I)

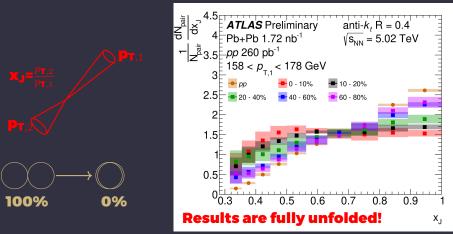

Full system Jet in QGP



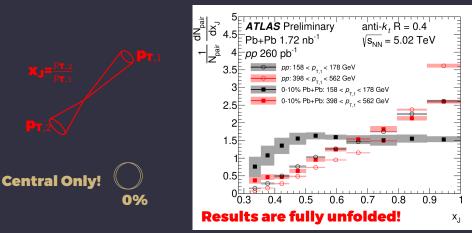


Not comprehensive! Many more ways to probe QGP
All ATLAS HI results (including jets) can be found here

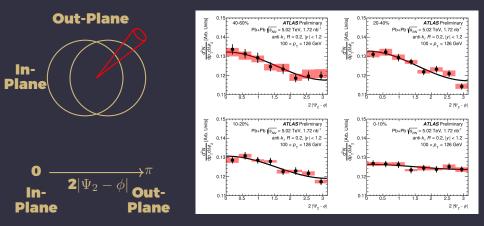
ATLAS Detector and Data


Via CDS

- Jets are reconstructed w/EMCal and HCal
- Charged particles via inner tracking detectors
- Centrality (nuclear overlap) is determined by FCal
- Z boson reconstructed w/ muon detectors and EMCal+track


Dijet Balance (I) ATLAS-CONF-2020-017

- Observe an enhanced imbalance in Pb+Pb compared to p+p
- Increases monotonically w/ nuclear overlap (100%ightarrow0%)
 - More medium produced \rightarrow greater energy loss!


Dijet Balance (II) ATLAS-CONF-2020-017

- As $p_{T,1}$ increases, return to a more balanced system
- However, even at highest p_T, 0-10% still distinct from p+p

Jet-Geometry Correlations (I) ATLAS-CONF-2020-019

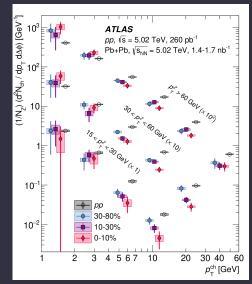
Simple counting of jets in-and-out-of-plane
We observe more jets in the final state in-plane!



Jet-Geometry Correlations (II) ATLAS-CONF-2020-019

 \mathbf{v}_2 : 2nd Fourier Coef. A(1 + 2 $\mathbf{v}_n \cos(\mathbf{n}(\Psi_n - \phi)))$

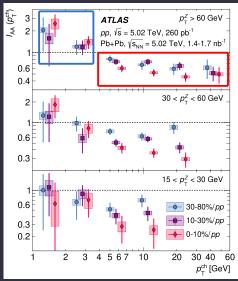
Significance ranges from ~2σ (40-60%) to ~4σ (10-20%)
 Implies a path-length dependence in energy loss!



Z-Tag w/ Jet Fragments (I)

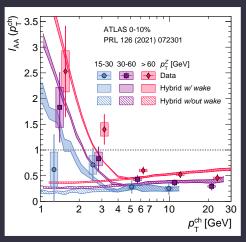

PRL 126 (2021) 072301

- Colorless tag (Z) unmodified by medium
 Initial scattering proxy
- Study charged particles opposite the jet
- Right: Charged particles produced in hemisphere opposite Z in Pb+Pb, p+p



Z-Tag w/ Jet Fragments (II)

- Observe suppression of high-p_T particles
- Excess of low p_T particles
- Medium interactions attenuate+redistribute

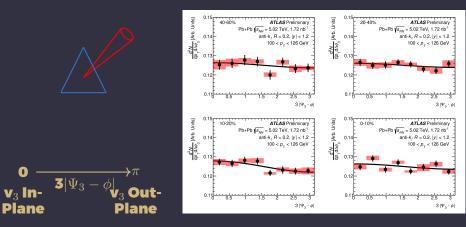


Z+hadrons Theory Comparison PRL 126 (2021) 072301

- Does a jet in medium leave a wake?
- Hybrid model does not describe low-p_T excess in data w/o such a backreaction

Conclusion

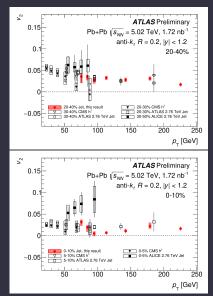
- Jets are an excellent probe for learning the properties of QCD matter
- Relative to vacuum, medium increases dijet imbalance
- The path length of jet thru medium impacts suppression
- Energy of the jet is redistributed from high-to-low-p_T particles



Jet-Geometry Correlations v₃


- Spatial fluctuations of nucleons ightarrow higher order geometries

• Observe null result w.r.t. triangular geometry


Cross-experiment Comparison

ATLAS-CONF-2020-019

v_2 : 2nd Fourier Coef. A(1 + 2 v_n cos(n($\Psi_n - \phi$)))

Nice agreement in semi-central
Modest tension in 0-10%

