Search for collective behaviour and multiparton interactions in *ep* scattering at HERA

On behalf of the H1 and ZEUS collaborations

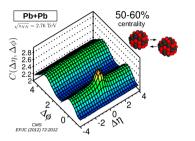
Dhevan Gangadharan

EPS, July 26th 2021

ъ

1/33

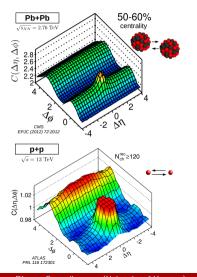
EPS, July 26th 2021


How small can a colliding system be while still exhibiting the collective features typically associated with the quark–gluon plasma in heavy-ion collisions?

What kind of environment could collectivity evolve from?

Recent measurements using the H1 and ZEUS detectors will be presented in neutral current DIS and photoproduction.

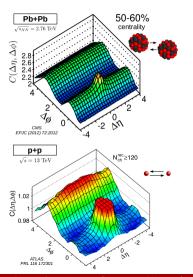
New ZEUS publication: arxiv:2106.12377 (submitted to JHEP) Recent H1 preliminaries: Analysis note


Motivation for the analysis

- Two-particle correlations in heavy-ion collisions show a clear **double ridge**, which is interpreted as a sign of fluid-like behaviour (QGP).
- C(Δη, Δφ) = S(Δη, Δφ)/B(Δη, Δφ),
 S and B are formed from pairs from the same- and mixed-events, respectively.

イロト 不得 トイヨト イヨト 二日

Motivation for the analysis


- Two-particle correlations in heavy-ion collisions show a clear **double ridge**, which is interpreted as a sign of fluid-like behaviour (QGP).
- C(Δη, Δφ) = S(Δη, Δφ)/B(Δη, Δφ),
 S and B are formed from pairs from the same- and mixed-events, respectively.
- The start of the LHC revealed that high-multiplicity p + p collisions also have a double-ridge!

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ─ ○

• Such collisions were thought to be too small to produce a thermally equilibrated QGP.

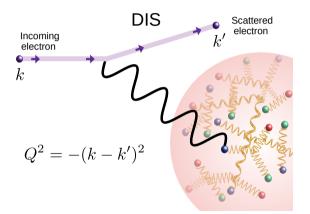
4/33

Motivation for the analysis

- Two-particle correlations in heavy-ion collisions show a clear **double ridge**, which is interpreted as a sign of fluid-like behaviour (QGP).
- C(Δη, Δφ) = S(Δη, Δφ)/B(Δη, Δφ),
 S and B are formed from pairs from the same- and mixed-events, respectively.
- The start of the LHC revealed that high-multiplicity p + p collisions also have a double-ridge!

(日)

- Such collisions were thought to be too small to produce a thermally equilibrated QGP.
- What about even more fundamental *ep* scattering at HERA??

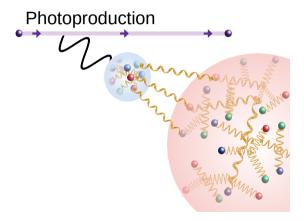

The HERA collider and main experiments

- Location: DESY, Hamburg, Germany
- Data taking: 1992 2007
- 27.5, 27.6 GeV electrons/positrons 920 GeV protons $\rightarrow \sqrt{s} = 318, 319$ GeV
- HERA I+II: 500 pb⁻¹ per experiment

イロト 不得 トイヨト イヨト 二日

Deep inelastic scattering (DIS)

- DIS is defined by large virtualities: $Q^2 \gg \Lambda_{\rm QCD}^2. \label{eq:Q2}$
- Transverse radius (*R*_t) and longitudinal length (*L*) of the probed region are given by:

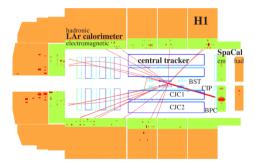

$$egin{aligned} R_t &\sim rac{1}{Q} \ L &\sim rac{1}{m_{ ext{proton}\, imes}} \end{aligned}$$

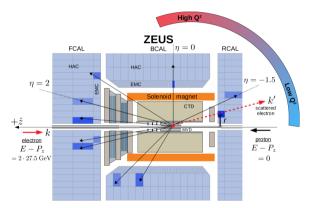
PRD 95 114008

• Neutral current (NC) DIS involves the exchange of photon or Z boson.

イロト 不得 トイヨト イヨト 二日

Photoproduction (PhP)




- Photoproduction (γp) is defined by small virtualities: Q² ≪ Λ²_{OCD}.
- Exchanged photon may fluctuate into quarks and gluons.
- Larger interaction regions are probed.
- Multiparton Interactions are possible.

イロト 不得下 不同下 不同下

• Scattering is hadron-like.

H1 and ZEUS detectors

◆□→ ◆圖→ ◆臣→ ◆臣→ □臣□

EPS, July 26th 2021 9 / 33

9/33

Event and track selection (main cuts only)

DIS event selection

	scattered electron	Q^2	$\sum (E_i - P_{z,i})$	$N_{ m ch}$	Vz
H1	in SpalCal	5 to 100 GeV ²	35 to 75 GeV	≥ 2	-35 to +35 cm
ZEUS	in CAL	\geq 20 GeV 2	47 to 69 GeV	\geq 20	-30 to $+30$ cm

Photoproduction event selection

	scattered electron	$\sum (E_i - P_{z,i})$	$N_{ m ch}$	Vz
H1	in tagger	NA	≥ 2	-30 to +30 cm
ZEUS	absent	\leq 55 GeV	≥ 20	-30 to +30 cm

Track selection

	p_{T}	η	DCA
H1	0.3 to 3 GeV	-1.6 to 1.6 (0 to 5 for DIS in HCM)	< 5 cm in XY
ZEUS	0.1 to 5 GeV	-1.5 to 2.0	$< 2 \mbox{ cm}$ in XY and Z

There are several differences between the H1 and ZEUS analyses but compatible results are obtained nevertheless.

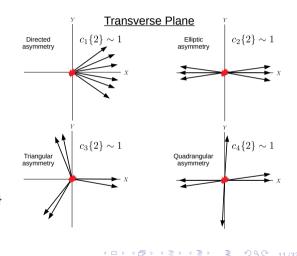
Dhevan Gangadharan (University of Houston)

Two- and four-particle correlation functions

Two-particle azimuthal correlations are measured:

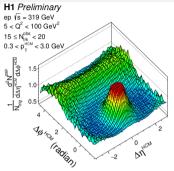
 $c_n\{2\} = \langle \langle \cos n(\phi_i - \phi_j) \rangle \rangle.$

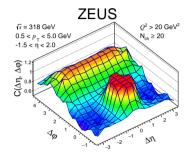
 φ_i is the azimuthal angle of particle *i*.


n is the harmonic.

Four-particle cumulant correlations are also measured:

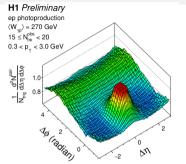
$$C_n\{4\} = \langle (\cos n(\phi_i + \phi_j - \phi_k - \phi_l)) \rangle c_n\{4\}(p_{T,1}) = C_n\{4\}(p_{T,1}) - 2 c_n\{2\}(p_{T,1}) c_n\{2\}$$

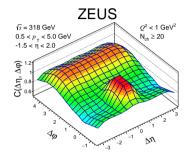

where $p_{T,1}$ is the transverse momentum of particle *i*.


Dhevan Gangadharan (University of Houston)

EPS, July 26th 2021 11 / 33

Results: H1 & ZEUS ridge plots in DIS




イロト 不得 トイヨト イヨト

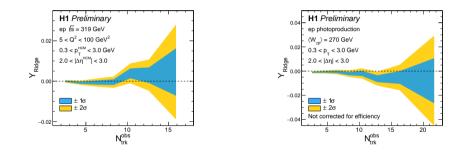
A near-side peak and away-side ridge are clearly visible. **No visible double-ridge.**

Note: Kinematic selection differs between H1 and ZEUS.

Results: H1 & ZEUS ridge plots in photoproduction

20

13/33

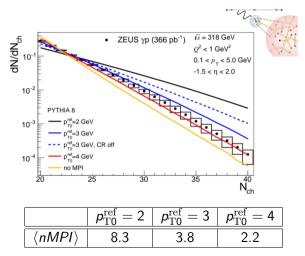

EPS, July 26th 2021

イロト 人間 ト イヨト イヨト

A near-side peak and away-side ridge are clearly visible. **No visible double-ridge.**

Correlation strengths are significantly smaller than those in DIS. Note: Kinematic selection differs between H1 and ZEUS.

Ridge yields in H1



Using a Zero-Yield-At-Minimum assumption, the ridge yields are extracted. Ridge yields in both DIS and Photoproduction are consistent with zero.

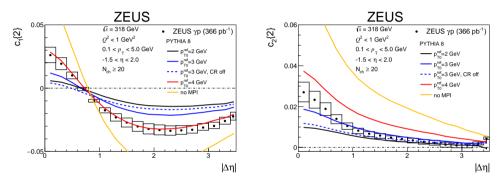
EPS, July 26th 2021 14 / 33

(日本)(間本)(日本)(日本)(日本)

Results: $dN/dN_{\rm ch}$

The level of MPI and IR divergencies are controled by the p_{T0} parameter in PYTHIA.

It is used to regularize the interaction cross section in PYTHIA.

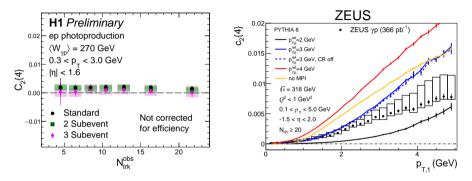

$$rac{d\sigma}{dp_{
m T}^2} \propto rac{lpha_s^2(p_{
m T0}^2+p_{
m T}^2)}{(p_{
m T0}^2+p_{
m T}^2)^2}$$

The energy dependence of this parameter is given by $p_{\rm T0} = p_{\rm T0}^{\rm ref} (W/7 \,{\rm TeV})^{0.215}$, where W is the $\gamma p \sqrt{s}$.

More MPI \rightarrow lower p_{T0}^{ref}

Colour Reconnection (CR) is PYTHIA's modeling of rescattering between partons from different MPIs

Results: $c_1\{2\}$ and $c_2\{2\}$ versus $\Delta\eta$



EPS. July 26th 2021

16/33

- Correlation strengths are diluted by MPI.
- The scenarios of no MPI and very many MPI are disfavored.

Results: Four-particle cumulants in photoproduction

• Four-particle cumulant is positive, which is in contrast to the negative values seen in non-central heavy-ion collisions.

イロト 不得 トイヨト イヨト

▶ < ≣ ▶ ≣ ∽ EPS. July 26th 2021

17/33

• The scenarios of no MPI and very many MPI are disfavored.

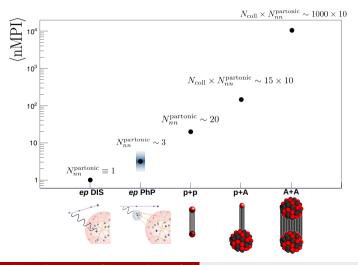
Summary

- Measurements of charged-particle azimuthal correlations have been presented using H1 and ZEUS data in *ep* photoproduction (γp) and NC DIS.
- There is no clear indication of a double ridge in either γp or DIS.
 The observations do not reveal significant collective behaviour like that seen in heavy-ions or high-multiplicity hadronic collisions.
- The concept of multiparton interactions provides a useful tool to help understand the emergence of collective behaviour. It sets the stage for a potential rescattering phase.

	nMPI	Collectivity
ep photoproduction	~ 3	No
pp high-multiplicity	~ 20	Yes

The initial states in both systems may be similar in their spatial extent but completely different in the number of MPI.

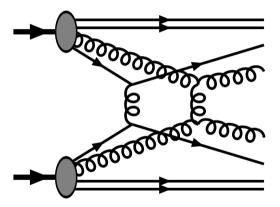
Backup


Dhevan Gangadharan (University of Houston)

EPS, July 26th 2021 19 / 33

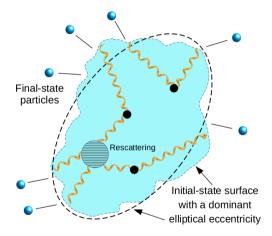
19/33

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへぐ


Illustration of MPI growth

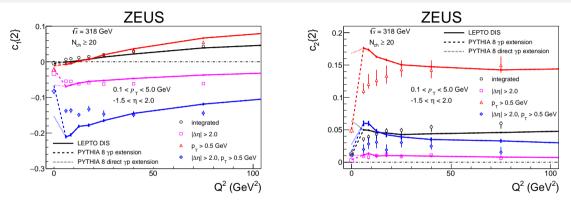
- Rough illustration of how nMPI grows from DIS to heavy-ions
- *N*_{coll}: number of binary nucleon-nucleon collsions
- N_{nn}^{partonic}: number of parton scatterings per binary nucleon-nucleon collision
- Estimates for N_{coll} taken from - Ann. Rev. Nucl. Part. Sci. 57, 205 (2007)
 - PRC 97 024905 (2018).
- Estimates for N_{nn}^{partonic} taken from PYTHIA

20/33


Multiparton Interactions (MPI)

- MPI occur when there's more than one 2 → 2 partonic scattering between the beam particles in a given event.
- If the scatterings are sufficiently hard $(p_T \gtrsim 1 \text{ GeV})$, they can be modeled in an event generator like PYTHIA.
- Established feature in high-multiplicity hadronic collisions. So far not conclusively observed in *ep* scattering.

イロト イポト イヨト イヨト

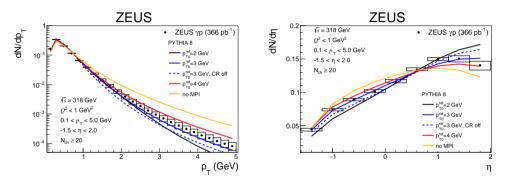

A subsequent rescattering phase is possible

- The initial scattering is shown here with 3 MPIs (black dots)
- Unlike in DIS, the spatial extent of this "initial state" is finite with an irregular shape in general.
- Subsequently, a phase of rescattering may occur, whereby a local thermal equilibrium might form.

イロト イロト イヨト イヨト

Results: Q^2 evolution of $c_1{2}$

Photoproduction correlation strengths ($Q^2 = 0$) are clearly diminished wrt those in DIS.

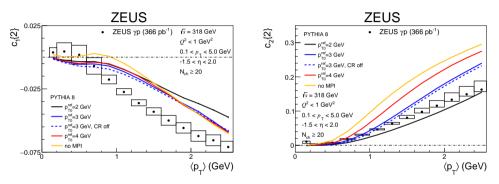

The LEPTO model of DIS gives a rough qualitative description of the data.

PYTHIA 8 with only the direct component of γp predicts much stronger correlations than the full calculation (direct + resolved).

-

イロト イポト イヨト イヨト

Results: $dN/dp_{ m T}$ and $dN/d\eta$



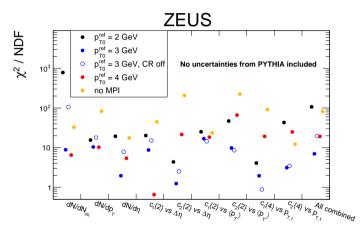
• The scenarios of no MPI and very many MPI are disfavored.

EPS, July 26th 2021 24 / 33

24/33

Results: $c_1\{2\}$ and $c_2\{2\}$ versus $\langle p_{\mathrm{T}} angle$

<ロト < 同ト < 回ト < 回ト = 三日 - 三日 -

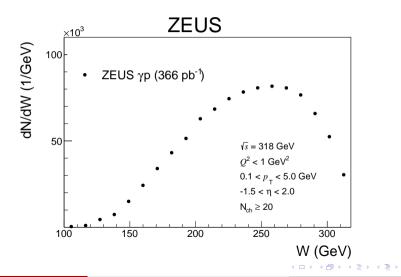

EPS. July 26th 2021

25 / 33

• $c_1\{2\}$ versus $\langle p_T \rangle$ not sensitive to MPI and not described well by PYTHIA.

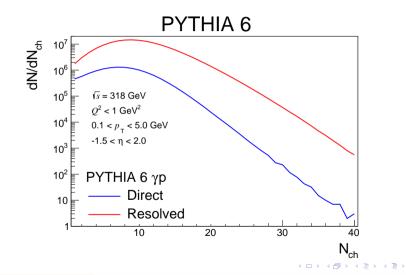
• More extreme levels of MPI are favored by $c_2\{2\}$ versus $\langle p_T \rangle$.

Condensed view of PYTHIA 8 comparisons

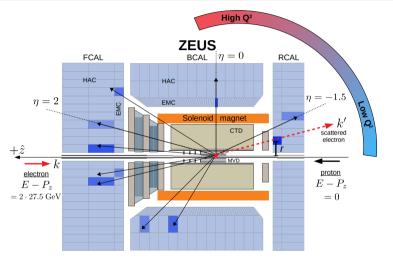


Dhevan Gangadharan (University of Houston)

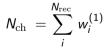
< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 26/33


EPS, July 26th 2021 26 / 33

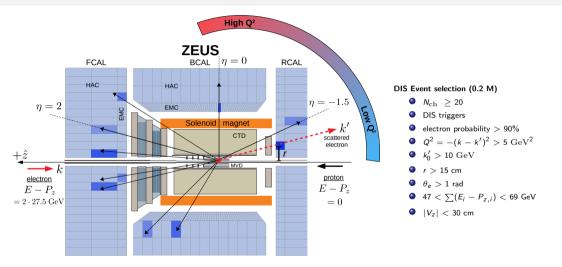
W distribution


▶ ▲ ■ ▶ ■ ク ۹ ペ _{27/33} EPS, July 26th 2021 27 / 33

Direct and Resolved event distributions

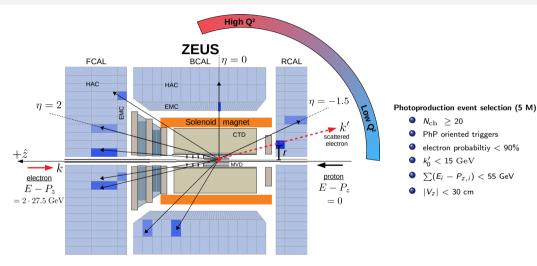

3

ZEUS track selection


Track selection for correlation analysis

- Reject scattered electron (if detected)
- $-1.5 < \eta < 2.0$
- $0.1 < p_T < 5.0 \text{ GeV}$
- \ge 1 MVD hit
- DCA_{XY,Z} < 2 cm</p>
- $\Delta R > 0.4$ (cone around scattered electron)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ■ ⑦ Q @ 29/33


ZEUS DIS event selection

EPS, July 26th 2021 30 / 33

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 30/33

ZEUS photoproduction event selection

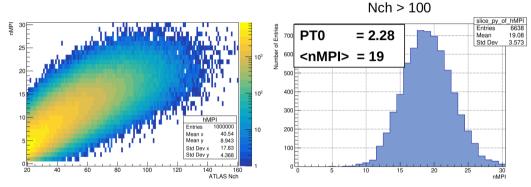
EPS, July 26th 2021 31 / 33

イロト (個) (ヨ) (ヨ) (ヨ) の()

Tracking efficiency corrections

The efficiency correction weights for 1-, 2-, and 4-particle distributions are defined as:

$$w^{(n)} = \frac{N_{gen}^n(\vec{x})}{N_{rec}^n(\vec{x})}$$


The are computed differentially in Monte Carlo simulations of the ZEUS detector:

dimension of \vec{x}	One-particle $(n=1)$	Two-particle $(n=2)$	Four-particle (n=4)
	φ	$\varphi_1 - \varphi_2$	$\varphi_1+\varphi_2-\varphi_3-\varphi_4$
x_2	η	$\langle \eta_i - \langle \eta angle angle$	$\langle \eta_i - \langle \eta \rangle angle$
x_3	p_{T}	$\langle p_{T,i} - \langle p_T \rangle \rangle$	$\langle p_{T,i} - \langle p_T \rangle \rangle$
x_4 (charge)	q	$ q_1 + q_2 $	$ q_1 + q_2 + q_3 + q_4 /2$
x_5	-	$N_{ m rec}$	$N_{ m rec}$

EPS. July 26th 2021

32 / 33

nMPI in high-multiplicity p + p PYTHIA at LHC energies

PYTHIA p + p events at $\sqrt{s} = 13$ TeV were generated.

 $\it N_{ch}$ was counted according to the ATLAS acceptance used in PRL 116 172301. $-2.5 < \eta < 2.5,~0.4 < \it p_T < 50~GeV$

Image: A matrix and a matrix