τ physics prospects at Belle II

Alejandro De Yta Hernández (CINVESTAV) on behalf of the Belle II Collaboration

EPS-HEP Conference 2021

Universität Hamburg - DESY (virtual)

July 26-30, 2021

EPS-HEP Conference 2021

European Physical Society conference on high energy physics 2021

Online conference, July 26-30, 2021

SuperKEKB Collider

Belle II at SuperKEKB

- See: Luminosity projection
- Regular data-taking despite Covid-19

3

τ -Physics at Belle II

- Why τ **physics**?
 - Large production cs: σ (e⁺e⁻ \rightarrow τ ⁺ τ ⁻) = 0.9 nb (τ -factory)
 - The τ is the only lepton massive enough to decay into hadrons:
 - Leptonic decays: BR ~ 35%
 - Hadronic decays: BR ~ 65%

• τ **physics** program Rich program of precision SM measurements and new physics searches @ Belle II

Some ongoing physics analyses @ Belle II:

- Precision SM measurements / Indirect NP searches (deviations from the SM)
 - Mass
 - Lifetime
 - Lepton universality in $\tau \rightarrow Ivv$ decays
 - τ EDM and MDM
 - *τ* → eeevv
 - CP violation $\tau \rightarrow K_s \pi v$

- Direct NP searches (forbidden / strongly suppressed decays)
 - $\tau \rightarrow \alpha$
 - $\tau \rightarrow \phi$
 - $\tau \rightarrow | \gamma$
 - $\tau \rightarrow \mu \mu \mu$
 - $\tau \rightarrow |\pi^0$
 - $\tau \rightarrow lhh$

DOI: 10.1093/ptep/ptz106 KEK Preprint 2018-27 BELLE2-PAPER-2018-001 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UNThPh 2018-26

The Belle II Physics Book

E. Kou^{75,54}, P. Urquijo^{145,54}, W. Altmannshofer^{135,5}, F. Beaujean^{70,5}, G. Bell^{122,4},
M. Beneke^{114,5}, I. I. Bigi^{148,5}, F. Bishara^{130,16,4}, M. Blanke^{10,51,7}, C. Bobeth^{113,114,5},
M. Bona^{120,2}, S. Branbillat^{11,5}, V. M. Brann^{10,5}, J. Brou^{121,135,4}, A. Buras^{115,5},
H. Y. Cheng^{13,5}, C. W. Chiang^{20,5}, M. Ciuchin^{10,0,5}, G. Colangelo^{128,5},
A. Crivellin^{10,0,2}, H. Czyri^{25,0,2}, A. Datta^{14,6,5}, P. F. Carolis^{3,5}, T. Deppisch^{15,4},
M. J. Dolan^{14,5,5}, J. Exans^{135,5}, S. Fajigi^{100,14,1}, T. Feldmann^{12,24,5}, S. Godfrey^{7,4},
M. Gronau^{22,5}, Y. Grossman^{15,5}, P. K. Guö^{15,134,5}, U. Haisel^{100,11,4},
C. Hanhar^{21,5}, S. Hashimoto^{30,26,5}, S. Hiross^{30,5}, J. Hisse^{30,00,4}, L. Hofer^{12,7},
M. Hoferichter^{168,5}, W. S. Hol^{92,7}, T. Huber^{122,5}, T. Hurth^{63,5}, S. Jager^{150,5},
S. Jahn^{23,4}, M. Jamin^{12,5,5}, J. Jones^{10,4,4}, M. Jung^{112,5}, S. Jakegr^{150,5},

τ -Mass measurement

0 1790 τ -Mass fundamental parameter of the SM Leptonic decay rate proportional to m₇⁵ 0 1785 $\Gamma(\tau \rightarrow l \nu \nu) \propto m_{\tau}^{5}$ B 0.1780 Depend on the • Testing lepton universality τ mass value 0.1775 • Br calculations that depend on m_{τ} and its accuracy Spring 201 0 177 290 291 τ_r(fs) ARGUS pseudo-mass technique & early Belle II data (8.8 fb⁻¹) Select events with a 3x1 topology 1-prong 3-prong • Signal: $\tau \rightarrow 3\pi v$ • Tag: $\tau \rightarrow 1$ -prong • For the decay $\tau \rightarrow 3\pi v$ calculate the pseudo-mass: $M_{min} = \sqrt[2]{M_{3\pi}^2} + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi}) \le m_{\tau}$ **Belle II** (Preliminary) 9000 $\tau(\rightarrow \pi\pi\pi\nu)\tau(\rightarrow e.\propto,\pi,\pi\pi^0)$ The mass of the τ lepton 8000 $Ldt = 8.8 \text{ fb}^{-1}$ eell (I=e «) & eebb $-\cdot ||(\gamma)|(|=e,\infty)$ 7000 m_{τ} is given by the position 6000 Events of the endpoint of the 5000 4000 distribution. 3000 2000 1000 Data / MC 0.5

CINVESTAV

0.4

0.6

0.8

12

Alejandro De Yta

M_{min} [GeV/c²]

1.6

1.8

arXiv:2008.04665

τ -Mass measurement

• An empirical p.d.f. is used to estimate the τ lepton mass, m_{τ}:

 $F(M, \vec{P}) = (P_3 + P_4 \cdot M) \cdot \tan^{-1}[(M - P_1)/P_2] + P_5 \cdot M + 1$

• P_1 is the estimator of the τ lepton mass.

 $m_{\tau} = 1777.28 \pm 0.75_{stat} \pm 0.33_{sys} MeV/c^2$

- Consistent with previous measurements!
- Belle II has similar systematic error as Belle

Alejandro De Yta

τ -Mass measurement

 Dominant systematic uncertainty due to the track momentum scale, but it is expected to be reduced

Systematic uncertainty	MeV/c^2
Momentum shift due to the B-field map	0.29
Estimator bias	0.12
Choice of p.d.f.	0.08
Fit window	0.04
Beam energy shifts	0.03
Mass dependence of bias	0.02
Trigger efficiency	≤ 0.01
Initial parameters	≤ 0.01
Background processes	≤ 0.01
Tracking efficiency	≤ 0.01

 A scenario with a total systematic uncertainty reduced is expected in the near future

- With the present level of systematic uncertainties, this measurement is expected to be statistically dominated until around 50 fb⁻¹ of data.
- With around 300 fb⁻¹ of data, systematic uncertainties would dominate the measurement.

Prospects for τ LFV & LNV searches

Ah The Belle II Physics Book, DOI: 10.1093/ptep/ptz106

CLEO

- Thanks to the large mass of
- the τ , we have an
- extensive variety of decay
- modes to explore Belle II

- LFV decays of the τ are strongly suppressed in the SM Br ~ $O(10^{-54})$
- Many NP models predict LFV decays of the τ at a measurable rate Br ~ $O(10^{-10}) - O(10^{-7})$
- Any observation of LFV is a clear indication of NP

- Golden channels:
 - →µµµ

Work in progress

- T→UV
- Belle II is expected to push the current bounds further by more than one order of magnitude.

Search for $\tau \rightarrow l\alpha$

- Search for the LFV decay channels: $\underline{\tau \rightarrow e \alpha}$ ($\tau \rightarrow \mu \alpha$ in progress) being α a BSM invisible particle
- This decay appers in several NP models: Axion-like particles, Z' gauge bosons, etc
- Idea: search for two body decay
 - The momentum of the lepton will manifest as a peak in the τ rest frame, as compared against the SM τ→lvv (bkg).

Alejandro De Yta

- Previous searches
 - Mark III (1985, 9.4 pb⁻¹)
 - ARGUS (1995, 472 pb⁻¹)

Search for $\tau \rightarrow l\alpha$

- Select events with a 3x1 topology (4 tracks)
 - Signal: $\tau \rightarrow 1$ -prong
 - Tag: τ→3πν
- Challenges:
 - Disentangle the SM decay $\tau \rightarrow l\nu\nu$ from the BSM signal $\tau \rightarrow l\alpha$
 - Idea: Move to the τ rest frame
 - Cannot access the τ rest frame directly due to missing particles
 - Use ARGUS method
 - $E_{\tau} = \sqrt{s/2}$
 - Approximation: $\hat{p}_{\tau} \simeq -\hat{p}_{3\pi}$

We also tested a modification where

BELLE2-NOTE-PL-2020-018

Т.

Search for $\tau \rightarrow l\alpha$

- Statistical treatment
 - Template based analysis
 - Fit the lepton momentum spectrum:
 - SM hypothesis
 - SM + BSM hypothesis
 - Hypothesis test
 - The data can be modeled as $F(x) = N_{e\alpha} f_{e\alpha}(x) + N_{e\nu\nu}f_{e\nu\nu}(x) + N_{bkg}f_{bkg}(x)$

$$= \frac{\varepsilon^{e\alpha}}{\varepsilon^{e\nu\nu}} N_{e\nu\nu} \operatorname{poi} f_{e\alpha}(x) + N_{e\nu\nu} f_{e\nu\nu}(x) + N_{bkg} f_{bkg}(x)$$

where $x=2E_e/m_\tau$ is the normalized energy in the p.r.f of the τ , and

 $poi \stackrel{\text{\tiny def}}{=} \frac{N_{e\alpha}}{N_{e\nu\nu}} \frac{\varepsilon^{e\nu\nu}}{\varepsilon^{e\alpha}} = \frac{Br(\tau \rightarrow e\alpha)}{Br(\tau \rightarrow e\nu\nu)}$

- Upper limit estimation for poi (RooStats) at 95% CL for 25 fb⁻¹
- Modified frequentist approach: CLs

$$CL_s = \frac{CL_{s+b}}{CL_u}$$

Preliminary results (no systematic effects were taken into account)

- Belle II is competitive with respect to ARGUS.
- Current status
 - Include τ→μα
 - Identification and inclusion of systematic uncertainties
 - Cross checks
 - PyHF: python package
 - BAT: Bayesian approach

Alejandro De Yta

Summary

- Belle II has a rich program of precision measurements and searches for NP in the τ sector
 - Large cross section of $e^+e^- \to \tau^+\tau^-$
 - High luminosity
 - Excellent detector capabilities
- Some analyses are already in good shape:
 - τ mass measurement
 - τ lifetime
 - Search for $\tau \rightarrow \mid \alpha$
 - τ→μμμ, τ→μγ
 - And more

Stay tuned!

Alejandro De Yta

τ -lifetime

- τ lifetime fundamental parameter of the SM
 - Tests of lepton universality
- Measurement strategy
 - Proper time given by

 $t = m_{\tau} \frac{l_{\tau}}{p_{\tau}}$ To be measured

- l_{τ} = decay length in lab frame
- p_{τ} = momentum in lab frame
- t = proper time
- Select events with a 3x1 topology
 - Signal: $\tau \rightarrow 3\pi v$
 - Tag: $\tau \rightarrow \rho \nu$

14

- Lifetime extraction
 - Fit proper decay time distribution with convolution of resolution function and exponential distribution:

