BaBar $\overline{B} \to D^* \ell^- \overline{\nu}_\ell$ amplitude analysis confronting latest lattice data

Biplab Dey

(on behalf of the BaBar Collaboration)

RH QUARK-MIXING VERTEX

- SM: weak interaction is purely left-handed (LH), both for leptonic and hadronic transitions.
- Leptonic side strongly constrained by a purely LH neutrino, but still room on the hadronic side for a RH component

• Affects operators for such diagrams, but two hadronic vertices difficult to probe (gluonic penguins, FSI effects, ...)

• Point-like and pure LH leptonic vertex allows clean probe of hadronic vertex.

$\overline{B} \to D^* \ell^- \overline{\nu}_{\ell}$: Golden mode for RH probes

$$\begin{array}{ccc}
D & \longleftarrow & \overline{B} & \xrightarrow{\lambda = 0} & W_{L,R}^{*-} \\
\text{spin-0} & \text{spin-0} & \text{spin-1}
\end{array}$$

$$D^* \longleftarrow \overline{B} \xrightarrow{\lambda = 0, \pm 1} W_{L,R}^{*-}$$

spin-1 spin-0 spin-1

- $\overline{B} \to D\ell^-\overline{\nu}_{\ell}$: spin-info of recoiling W^* lost. Only vector FFs, $f_{0,+}$.
- $\overline{B} \to D^* \ell^- \overline{\nu}_{\ell}$: spin-1 D^* retains spin-info. Both vector (V) and axial-vector $(A_{1,2,3})$ FFs.

- $\sqrt{q^2}$: di-lepton mass. 3 angles: $\Omega \in \{\theta_l, \theta_V, \chi\}$
- Full angular analysis allows to probe the relative ratio of the V and A components.

GLOBAL RH CONSTRAINTS

- We refer to the global RH analysis in 1703.04751.
- Weak collider constraints.
- Tree-level data is more constraining than $\Delta F = 2$ (mixing, etc.).
- 10% effect in $Re(\epsilon_R)$ allowed. Constraints on $Im(\epsilon_R)$ even weaker.
- Older SL papers (eg. 0907.2461) mostly looked at the normalisation.
- But ϵ_R can be cleanly probed by the angular analysis, independent of the $|V_{cb}|$ normalisation issue (see 2106.13855).

THE GENERIC 4-D PDF [PRD 92, 033013 (2015)]

• Differential rate (4-d fit pdf):

$$\frac{d\Gamma}{dq^2d\Omega} \propto \sum_{i=1}^{14} f_i(\Omega) \Gamma_i(q^2)$$

• Transversity q^2 amplitudes:

$$H_0(q^2) \equiv h_0$$
 $H_{\{\parallel,\perp\}}(q^2) \equiv h_{\{\parallel,\perp\}} \underbrace{e^{i\delta_{\{\parallel,\perp\}}}}_{\text{NP phase}}$

• Orthonormal angular basis:

•
$$Y_l^m \equiv Y_l^m(\theta_l, \chi)$$

•
$$P_l^m \equiv \sqrt{2\pi} Y_l^m(\theta_V, 0)$$

$\underline{}$	$f_i(\Omega)$	$\Gamma_i^{ m tr}(q^2)/({f k}q^2)$
1	$P_0^0 Y_0^0$	$h_0^2 + h_{\parallel}^2 + h_{\perp}^2$
2	$P_2^0 Y_0^0$	$-rac{1}{\sqrt{5}}(h_{\parallel}^2+h_{\perp}^2)+rac{2}{\sqrt{5}}h_0^2$
3	$P_0^0 Y_2^0$	$\frac{1}{2\sqrt{5}}\left[(h_{\parallel}^2 + h_{\perp}^2) - 2h_0^2\right]$
4	$P_2^0 Y_2^0$	$-\frac{1}{10}(h_{\parallel}^2 + h_{\perp}^2) - \frac{2}{5}h_0^2$
5	$P_2^1\sqrt{2}Re(Y_2^1)$	$-\frac{3}{5}h_{\parallel}h_0\cos\delta_{\parallel}$
6	$P_2^1\sqrt{2}Im(Y_2^1)$	$\frac{3}{5}h_{\perp}h_0\sin\delta_{\perp}$
7	$P_0^0 \sqrt{2} Re(Y_2^2)$	$-rac{3}{2\sqrt{15}}(h_\parallel^2-h_\perp^2)$
8	$P_2^0 \sqrt{2} Re(Y_2^2)$	$rac{\sqrt{3}}{10}(h_\parallel^2-h_\perp^2)$
9	$P_0^0 \sqrt{2} Im(Y_2^2)$	$\sqrt{\frac{3}{5}}h_{\perp}h_{\parallel}\sin(\delta_{\perp}-\delta_{\parallel})$
10	$P_2^0 \sqrt{2} Im(Y_2^2)$	$-\frac{\sqrt{3}}{5}h_{\perp}h_{\parallel}\sin(\delta_{\perp}-\delta_{\parallel})$
11	$P_0^0 Y_1^0$	$-\sqrt{3}h_{\perp}h_{\parallel}\cos(\delta_{\perp}-\delta_{\parallel})$
12	$P_2^0 Y_1^0$	$\frac{3}{\sqrt{15}}h_{\perp}h_{\parallel}\cos(\delta_{\perp}-\delta_{\parallel})$
13	$P_2^1 \sqrt{2} Re(Y_1^1)$	$\frac{3}{\sqrt{5}}h_{\perp}h_0\cos\delta_{\perp}$
14	$P_2^1\sqrt{2}Im(Y_1^1)$	$-rac{3}{\sqrt{5}}h_{\parallel}h_0\sin\delta_{\parallel}$

HQET FF'S AND THE RATIO OBSERVABLES

- H_{λ} amplitudes are written in terms of the FFs.
- HQET: FF's only depend on w, the gamma-factor between B and recoiling D^* .

$$\begin{split} \frac{\langle D^*(v',\varepsilon)|V^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_{D^*}}} &= i h_V(w) \epsilon^{\mu\nu\alpha\beta} \varepsilon_{\nu}^* v_{\alpha}' v_{\beta} \\ \frac{\langle D^*(v',\varepsilon)|A^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_{D^*}}} &= h_{A_1}(w)(w+1) \varepsilon^{*\mu} - h_{A_2}(w)(\varepsilon^* \cdot v) v^{\mu} \\ \frac{\langle D^*(v',\varepsilon)|A^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_{D^*}}} &= h_{A_1}(w)(w+1) \varepsilon^{*\mu} - h_{A_2}(w)(\varepsilon^* \cdot v) v^{\mu} \\ - h_{A_3}(w)(\varepsilon^* \cdot v) v'^{\mu} & V &= \frac{h_V}{r'} \end{split} \end{split}$$

- HQS limit: $\{h_V, h_{A_1}, h_{A_3}\} \rightarrow \zeta(w)$ and $h_{A_2} \rightarrow 0$.
- The two ratio observables $R_{1,2}$ have reduced hadronic uncertainties.

ϵ_R and the $\sin\chi$ terms [1505.02873]

- Define H_{λ} for $b \to c\ell^{-}\overline{\nu}_{\ell}$ $(\overline{B}^{0}, B^{-}).$
- Ignoring overall normalisation, RH component as $V \to (1 + \epsilon_R)V$.
- In SM, the amplitudes are relatively real. $\sin \chi$ terms are zero.
- Non-zero $\Gamma_{\{6,9,10,14\}}$ would be clear sign of NP!

$\underline{}$	$f_i(\Omega)$	$\Gamma_i^{ m tr}(q^2)/({f k}q^2)$
1	$P_0^0 Y_0^0$	$h_0^2 + h_{\parallel}^2 + h_{\perp}^2$
2	$P_2^0 Y_0^0$	$-\frac{1}{\sqrt{5}}(h_{\parallel}^2+h_{\perp}^2)+\frac{2}{\sqrt{5}}h_0^2$
3	$P_0^0 Y_2^0$	$\frac{1}{2\sqrt{5}}\left[(h_{\parallel}^2+h_{\perp}^2)-2h_0^2\right]$
4	$P_2^0 Y_2^0$	$-\frac{1}{10}(h_{\parallel}^2+h_{\perp}^2)-\frac{2}{5}h_0^2$
5	$P_2^1\sqrt{2}Re(Y_2^1)$	$-rac{3}{5}h_\parallel h_0\cos\delta_\parallel$
6	$P_2^1\sqrt{2}Im(Y_2^1)$	$\frac{3}{5}h_{\perp}h_0\sin\delta_{\perp}$
7	$P_0^0 \sqrt{2} Re(Y_2^2)$	$-rac{3}{2\sqrt{15}}(h_\parallel^2-h_\perp^2)$
8	$P_2^0 \sqrt{2} Re(Y_2^2)$	$\frac{\sqrt{3}}{10}(h_{\parallel}^2 - h_{\perp}^2)$
9	$P_0^0 \sqrt{2} Im(Y_2^2)$	$\sqrt{rac{3}{5}}h_{\perp}h_{\parallel}\sin(\delta_{\perp}-\delta_{\parallel})$
10	$P_2^0 \sqrt{2} Im(Y_2^2)$	$-\frac{\sqrt{3}}{5}h_{\perp}h_{\parallel}\sin(\delta_{\perp}-\delta_{\parallel})$
11	$P_0^0 Y_1^0$	$-\sqrt{3}h_{\perp}h_{\parallel}\cos(\delta_{\perp}-\delta_{\parallel})$
12	$P_2^0 Y_1^0$	$rac{3}{\sqrt{15}}h_{\perp}h_{\parallel}\cos(\delta_{\perp}-\delta_{\parallel})$
13	$P_2^1\sqrt{2}Re(Y_1^1)$	$\frac{3}{\sqrt{5}}h_{\perp}h_0\cos\delta_{\perp}$
14	$P_2^1\sqrt{2}Im(Y_1^1)$	$-rac{3}{\sqrt{5}}h_{\parallel}h_0\sin\delta_{\parallel}$

CP CONJUGATION (DELICATE!)

- Under CP conjugation, $\overline{\chi} = -\chi$, $\overline{H}_{\lambda}(\delta_S, \delta_W) = H_{-\lambda}(\delta_S, -\delta_W)$.
- The strong phase δ_S can also lead to a $\sin \chi$ term, but lead to same signed moments for B and \overline{B} then.

• See also 1903.02567.

- Checked explicitly in $B^0 \to J/\psi K^+\pi^-$.
- True CPV: $\sin \chi$ terms must be different between \overline{B} and B.
- $\epsilon_R \to \epsilon_R^*$, between \overline{B} and B, assuming no strong phase for the SL case.

BABAR DATA ANALYSIS [PRL123, 091801 (2019)]

- Pros: hadronic tagging allows very clean sample and extremely good resolutions (%-level) in the angular variables.
- Con: low efficiency. $N_{\rm sig} \sim 6000$ for a 4-d analysis.

Biplab Dey (ELTE)

DATA/MC COMPARISONS [PRL123, 091801 (2019)]

- Acceptance in full 4-d using norm. integrals included in the fit
- Accepted MC (incl. eff. effects) weighted by the BGL results should match the data in all multi-dim. distributions.

1-d distributions:

3-d in angles, q^2 -integrated:

Top row: Data

Bottom row: Acc. MC wtd by BGL

BGL "TRUNCATION" ISSUE

- BaBar-19 BGL fit was a linear expansion (N = 2). Seen to be adequate, given the maximum value of the expansion parameter was $z_{\text{max}} \sim 0.028$.
- Claim by other papers ⇒ doesn't affect the FF, but underestimates uncertainties (?).
- Same papers never seem to explain, how *exactly* they include the unitarity constraints in the BGL parameters (higher terms break unitarity).
- We will publish one version of the fit with N=3, irrespective of unitarity breaking (overfitting?).

NEW MILC DATA!

Semileptonic form factors for $B \to D^* \ell \nu$ at nonzero recoil from 2+1-flavor lattice QCD

A. Bazavov, ¹ C.E. DeTar, ² Daping Du, ³ A.X. El-Khadra, ^{4,5} E. Gámiz, ⁶ Z. Gelzer, ⁴ Steven Gottlieb, ⁷ U.M. Heller, ⁸ A.S. Kronfeld, ⁹ J. Laiho, ³ P.B. Mackenzie, ⁹ J.N. Simone, ⁹ R. Sugar, ¹⁰ D. Toussaint, ¹¹ R.S. Van de Water, ⁹ and A. Vaquero^{2, *} (Fermilab Lattice and MILC Collaborations)

[2105.14019 May 2021]

- Long awaited w > 1 data for the golden channel.
- Non-zero recoil allows direct comparisons with data for the first time.
- Lattice is pure SM. Data, might not be so.

Comparisons in the $\{A_1, A_2, V\}$ FF basis

- Within BaBar, both BGL and CLN gave very comparable results.
- Clear discrepancy in A_2 with CLN-WA.
- Now including MILC data confirms this discrepancy.

Comparisons in $\{R_1, R_2\}$ ratios

• $R_1 \sim h_V/h_{A_1}$ and $R_2 \sim [h_{A_2}, h_{A_3}]/h_{A_1}$.

• MILC $R_1(1)$ is $\sim 15\%$ higher than BaBar (although the slopes also differ). ϵ_R can affect R_1 but not R_2 .

More on $R_2(1)$ (expt.)

- BaBar-19 fit simply did not like lower $R_2(1)$, both CLN/BGL. Strong feature of the data.
- Every single analysis other than BaBar-19 found $R_2(1) \sim 0.85$. Reflected in current HFLAV.

measurement	type	$R_2(1)$
BaBar-06	untagged 4d	0.885 ± 0.047
Belle-17	tagged $4 \times 1d$	0.87 ± 0.10
Belle-18	untagged $4 \times 1d$	0.852 ± 0.022
HFLAV-latest	_	0.852 ± 0.018

• Without tagged+4d, ambiguous/multiple solutions ⇒ end up with incorrect solution?

Preliminary comparisons among JLQCD/MILC

- Taken from T. Kaneko's FPCP-21 talk.
- Overall good agreement in h_{A_1} . Slight slope difference.

Preliminary comparisons among JLQCD/MILC

- $h_{A_2}(1)$ is significantly negative.
- Some slope difference in h_V between JLQCD/MILC.

My interpretation of unofficial JLQCD

- Roughly, these are what I read off from the FPCP JLQCD slides:
 - $R_1(1) \sim 1.29$: closer but still higher than BaBar-19 ("some" room for ϵ_R still)
 - $R_2(1) \sim 1.06$: excellent agreement with BaBar-19.
 - Slopes slightly less steep than MILC.

SUMMARY AND ONGOING WORK

- Availability of the "SM data" (lattice) now allows disentangling the RH component in $b \to c$.
- Higher value of $R_2(1)$ seen by BaBar-19 confirmed by lattice.
- MILC $R_1(1)$ higher than BaBar. Raises prospect of searching for ϵ_R .
- Looking forward to JLQCD results. Preliminary data suggests in better agreement with BaBar than MILC.
- Combined MILC + BaBar fits allowing for a complex ϵ_R ongoing.