

Measurements of $B \rightarrow D(*)h$ and charmless B-decays at Belle II

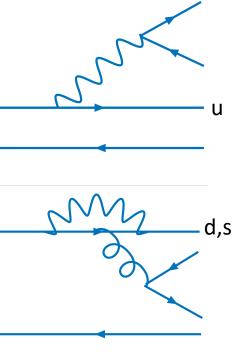
Benedikt Wach on behalf of the Belle II collaboration

Max-Planck-Institute for Physics, Munich

July 26th, 2021

Charmed and Charmless B-decays

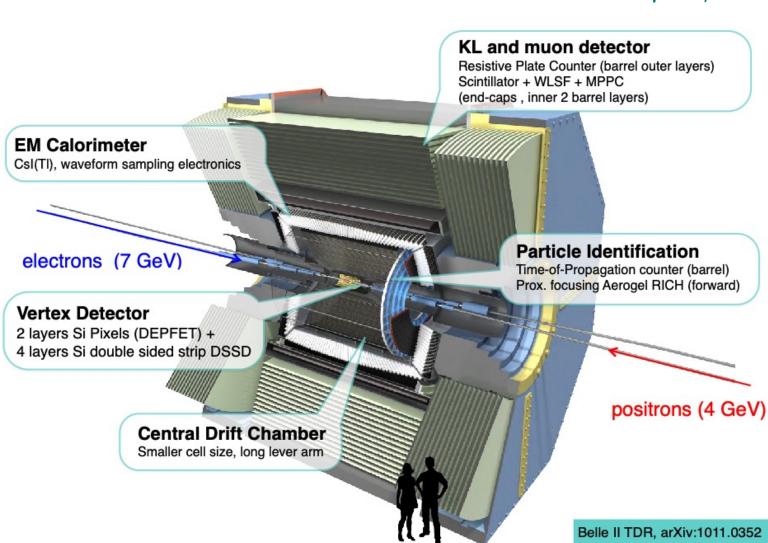
<u>B→D(*)h</u>


- mediated through favoured $b \rightarrow c$ tree transition with high branching fractions of $\sim 0.5\%$
- → serve as important **control modes**
- $B \rightarrow D(*)K$ modes are theoretically clean modes to **precisely determine** γ/φ_3

Charmless decays:

- mediated through Cabibbo-suppressed b \rightarrow u and/or loop-suppressed b \rightarrow d/s transitions
- highly sensitive to non-SM loop contributions
- probe SM and non-SM dynamics in all three CKM angles (today: α/φ_2)

Challenges:


- low BFs of order <= 10⁻⁵
- $e^+e^- \rightarrow q\bar{q}$ background dominated

SuperKEKB and Belle II Detector

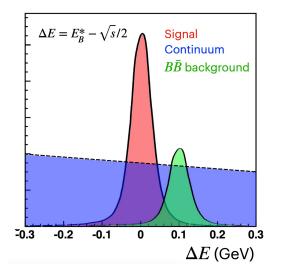
- SuperKEKB: energy-asymmetric e^+e^- collider running at Y(4S) resonance (10.58 GeV)
- → clean experimental environment
- world record peak luminosity: 3.1 x 10³⁴ cm⁻² s⁻¹
- Goal: 50 ab⁻¹ by mid 2030s
- so far 213 fb⁻¹ of data collected
- unique reach on final states with multiple neutrinos and π^0 /photons
- Today: results on ~63 fb-1

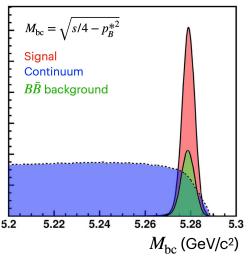
Analysis Overview

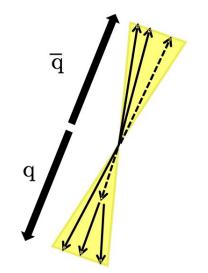
1. Reconstruction

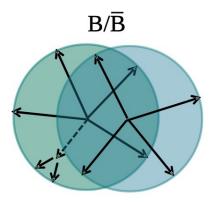
 combine candidates in kinematic fits to fill list of B-meson candidates from low-level observables

2. Selection


 mostly loose baseline selection cuts followed by optimized continuum suppression and particle identification cuts

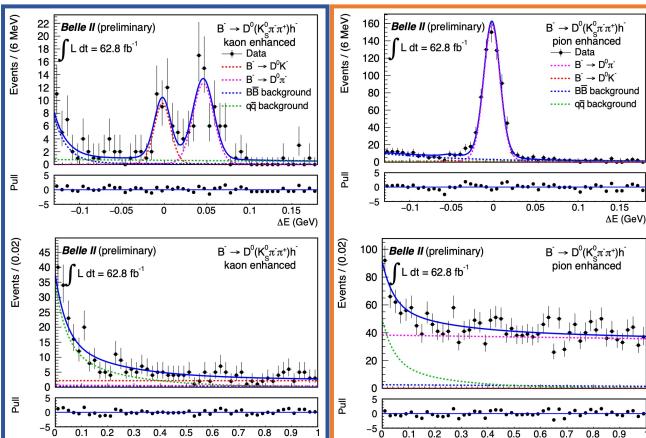

3. Modelling


- extract models from simulated data (+ calibrate on data)
- determine selection efficiencies for BR calculations
- **4. Fit** to data & calculate physics quantities
 - fit using usually one to three fit variables (ΔE , M_{bc} and **continuum** suppression variable)


5. Systematic Uncertainties

toy studies and control mode analyses

momenta distribution in CMS frame


$$B \rightarrow D^0 h^-$$

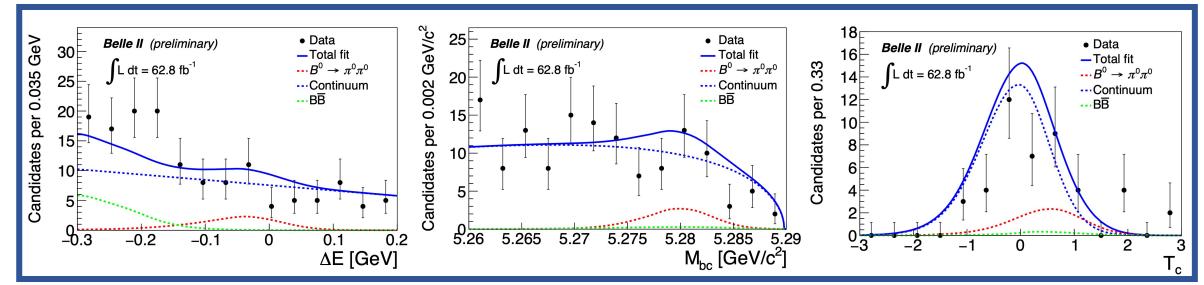
important observable: ratio of decay rates

$$R^{0} = \frac{\Gamma(B^{-} \to D^{0}K^{-})}{\Gamma(B^{-} \to D^{0}\pi^{-})}$$

- allows for cancellation of many systematic uncertainties
- → clean approach to test theory predictions of factorization and SU(3) symmetry breaking in QCD
- simultaneous 2D-fit in ΔE and CS classifier of kaon/pion-enhanced samples

https://arxiv.org/pdf/2104.03628

pion-enhanced $\mathfrak{Q}(K/\pi) < 0.6$


	$B^- \to D^0(K^-\pi^+)h^-$	$B^- \to D^0(K_{\rm S}^0 \pi^+ \pi^-) h^-$	$\bar{B}^0 \to D^+ h^-$	$B^- \to D^{*0} h^-$	$\bar{B}^0 \to D^{*+}h^-$
Belle II $R^{+/0} \ (\times 10^{-2})$	$7.66 \pm 0.55 ^{+0.11}_{-0.08}$	$6.32 \pm 0.81 ^{+0.09}_{-0.11}$	$9.22 \pm 0.58 \pm 0.09$	$6.80 \pm 1.01 \pm 0.07$	$5.99 \pm 0.82 ^{+0.17}_{-0.08}$
LHCb $R^{+/0}$ (×10 ⁻²)	$7.77 \pm 0.04 \pm 0.07$ [24]	$7.77 \pm 0.04 \pm 0.07$ [24]	$8.22 \pm 0.11 \pm 0.25$	$7.93 \pm 0.11 \pm 0.56$ [24]	$7.76 \pm 0.34 \pm 0.26$

$B^0 \to \pi^0 \pi^0$

- unique Belle II capability to study all $B \to \pi\pi$ channels in consistent manner to extract α/φ_2
- most challenging mode:
 - two π^0 's in final state (i.e. photons only)
 - low \mathfrak{B} (10⁻⁶)
- optimized π^0 selection: combine 20 ECL variables using multivariate technique to suppress background photons
- **3D-fit** in ΔE , M_{bc} and transformed continuum suppression variable T_c

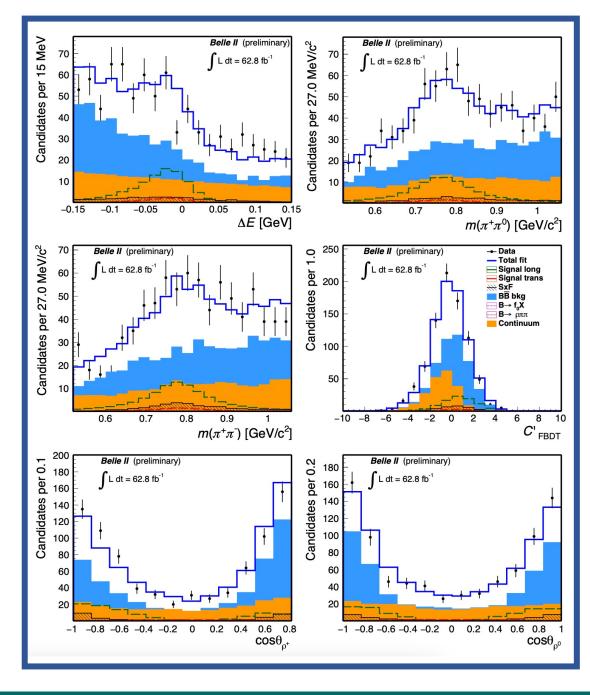
https://arxiv.org/pdf/2107.02373.pdf

$$N_{\text{fit}}(B^0 \to \pi^0 \pi^0) = 14^{+6.8}_{-5.6} \text{ with } 3.4\sigma$$

$$\mathfrak{B}_{\text{fit}}(B^0 \to \pi^0 \pi^0) = [1.09^{+0.50}_{-0.41} \text{ (stat)} \pm 0.27 \text{ (sys)}] \times 10^{-6}$$

First measurement in Belle II data!

$$B^+ \rightarrow \rho^+ \rho^0$$


- pion-only final state and broad ρ -peak \rightarrow large backgrounds
- Spin-0 \rightarrow Spin+1 + Spin-1 \rightarrow angular analysis
- **6D-fit** including ΔE , $T_{\rm c}$, and ρ masses to extract signal; and helicity angles to measure fraction $f_{\rm L}$ of decays with longitudinal polarization
- syst. uncertainty dominated by data driven π^0 efficiency \rightarrow will decrease with time

$$N_{fit} = 104 \pm 16$$

$$\mathfrak{B}_{fit} = [20.6 \pm 3.2(\text{stat}) \pm 4.0 \text{ (sys)}] \times 10^{-6}$$
 $f_1 = 0.936^{+0.049}_{-0.041}(\text{stat}) \pm 0.021 \text{ (sys)}$

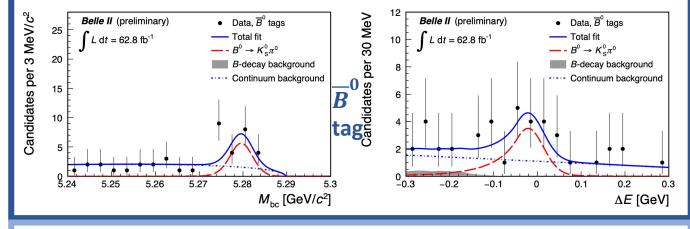
First reconstruction in Belle II data, surpassing early Belle performance!

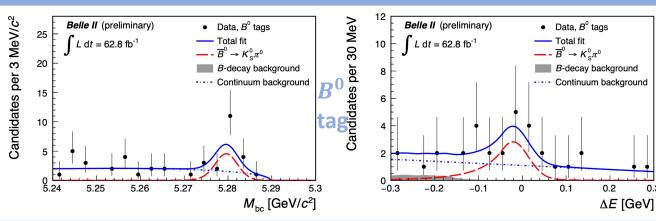
(20% better precision than Belle using 78 fb-1) (PRL 91, 221801 (2003))

$$B^0 \to K_S^{0} \pi^0$$

$$\Delta p \cdot \Delta q \geqslant \frac{1}{2} t$$

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$


https://arxiv.org/abs/2104.14871

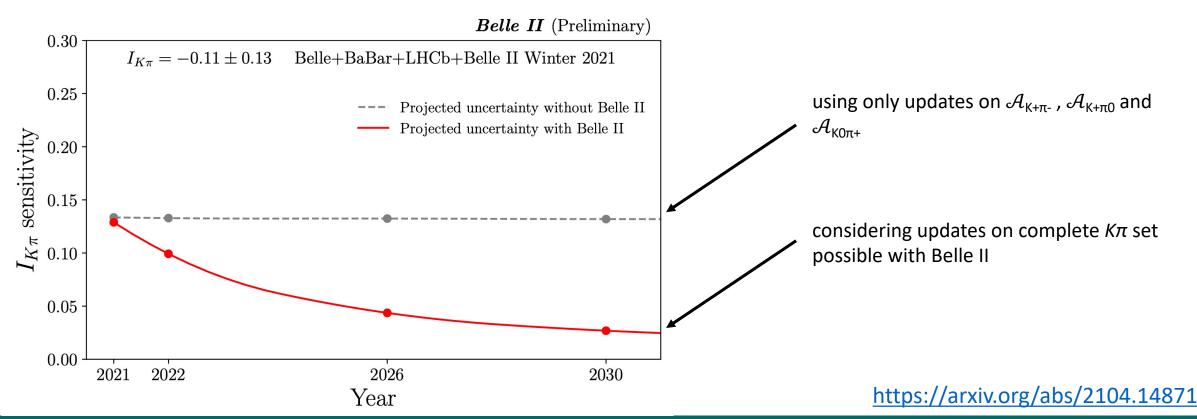

Isospin sum rule: stringent null test of SM, sensitive to presence of non-SM dynamics in Belle II: unique, consistent access to all channels

BF: challenging as it requires K_S^0 and π^0 reconstruction $\underline{\mathcal{A}}_{CP}$: requires flavor tagging: fit of ΔE -M_{bc}-flavor of the *B*-meson (*q*) (see Stephan Duell's talk this morning)

$$N_{\text{fit}}(B^0 \to K_S^{0}\pi^0) = 45^{+9}_{-8}$$

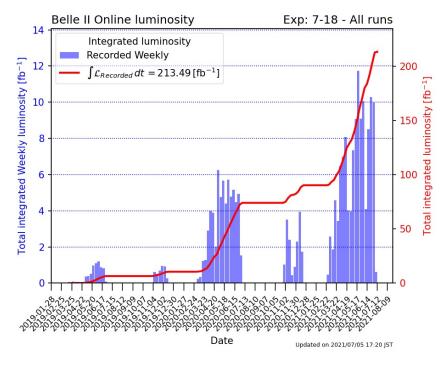
 $\mathfrak{B}_{\text{fit}}(B^0 \to K^0\pi^0) = [8.5^{+1.7}_{-1.6} \text{ (stat)} \pm 1.2 \text{ (sys)}] \times 10^{-6}$
 $\mathcal{A}_{\text{CP}}(B^0 \to K^0\pi^0) = 0.40^{+0.46}_{-0.44} \text{ (stat)} \pm 0.04 \text{ (sys)}$

First measurement in Belle II data and last missing piece to sum rule!



Isospin sum rule – uncertainty projection

- extrapolate the uncertainty on $I_{\kappa\pi}$ into next decade (assuming stat. \approx syst.)
- future projections with Belle II and LHCb expected luminosities
- dominant uncertainty coming from $\mathcal{A}_{K0\pi0}$ \Rightarrow Belle II will play crucial role in pinning down $I_{K\pi}$



Summary

 $\Delta_p.\Delta_q \geqslant \frac{1}{2}t$

- Belle II train has picked up pace for a leading role in testing isospin sum rule and precise determinations of α and γ
- First/improved measurements of charmless decays in 63 fb⁻¹ of early data and a number of vital control modes
- First Belle II measurement of $\mathcal{A}_{K0\pi0}$ completes the ingredients for the isospin sum rule
- All results agree with known values within uncertainties, still dominated by small sample size
- <u>but</u> already 213 fb⁻¹ on tape, ready to be analysed!

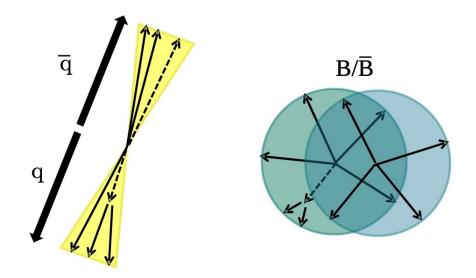
A lot of done and ongoing work not presented today: expect many more new/updated results in the future!

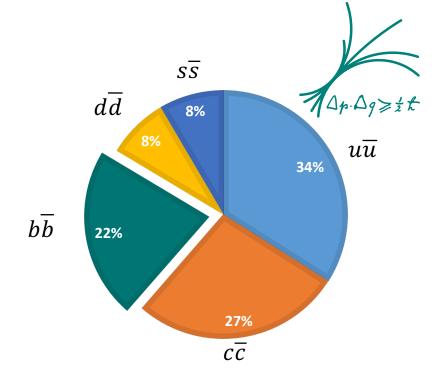
 $B \rightarrow D(*)h https://arxiv.org/abs/2104.03628$

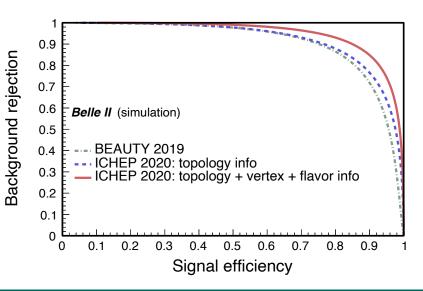
 $B \to K^+\pi^-, K^0\pi^-, \pi^+\pi^- : https://arxiv.org/abs/2106.03766$

 $B \rightarrow K^+\pi^0$, $\pi^+\pi^0$: <u>https://arxiv.org/abs/2105.04111</u>

 $B \rightarrow K^0\pi^0$: https://arxiv.org/abs/2104.14871


 $B \rightarrow \pi^0 \pi^0$: https://arxiv.org/pdf/2107.02373.pdf

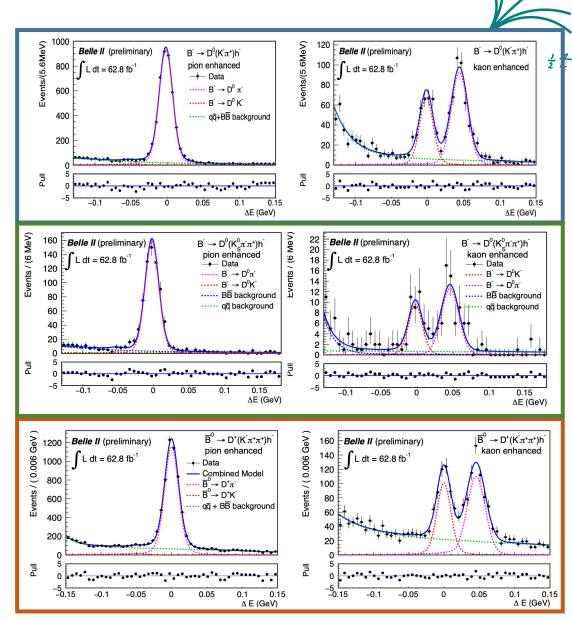



Backup

Continuum Suppression

- continuum background strongly dominating
- exploit kinematic, topological differences between BB and qq
- employ binary boosted decision tree (FastBDT) to create classifier variable from up to ~40 variables
- cut and/or fit this CS classifier

July 26th, 2021 EPS2021 – Benedikt Wach 12

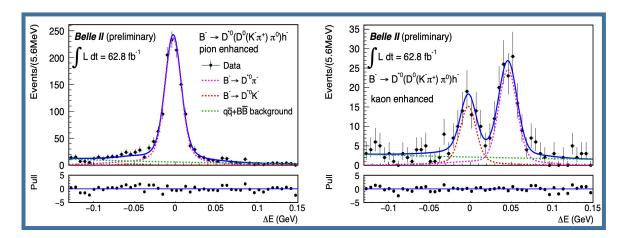

$B \rightarrow Dh^-$

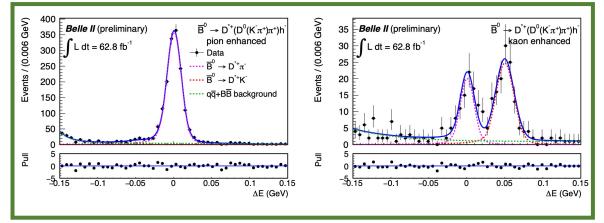
- simultaneous 1D-fit of pion- and kaon-enriched samples in $\Delta E^{(1)}$ to determine **R**
- kaon(pion)-enriched sample: $\mathfrak{L}(K/\pi) > (<) 0.6$

	$B^- \to D^0(K^-\pi^+)h^-$	$B^- \to D^0(K_{\rm S}^0 \pi^+ \pi^-) h^-$	$\bar{B}^0 o D^+ h^-$	
Belle II $R^{+/0}$ (×10 ⁻²)	$7.66 \pm 0.55 ^{+0.11}_{-0.08}$	$6.32 \pm 0.81 ^{+0.09}_{-0.11}$	$9.22 \pm 0.58 \pm 0.09$	
LHCb $R^{+/0} \ (\times 10^{-2})$	$7.77 \pm 0.04 \pm 0.07$ [24]	$7.77 \pm 0.04 \pm 0.07$ [24]	$8.22 \pm 0.11 \pm 0.25$	[25]

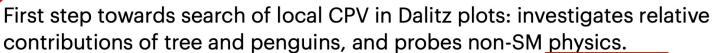
Results compatible with world average values!

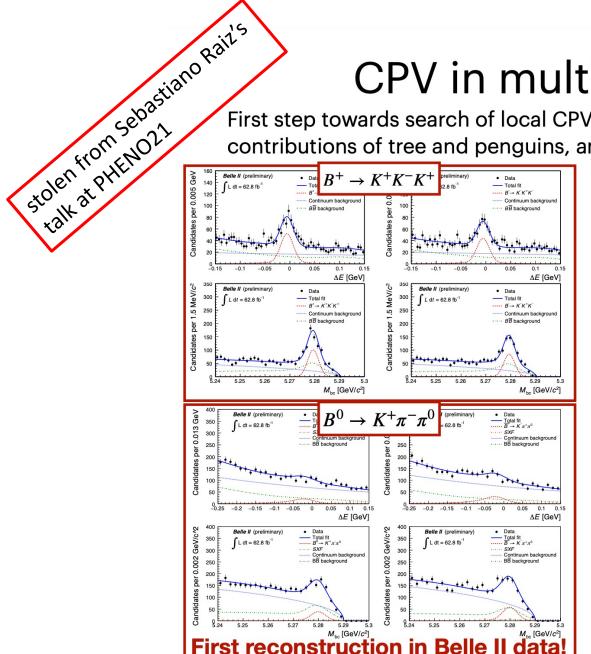
(1): 2D-fit in ΔE and CS classifier for $B^- \to D^0(K_S^0\pi^+\pi^-)K^-$

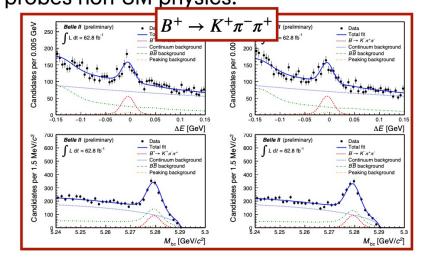

$B \rightarrow D^*h^-$



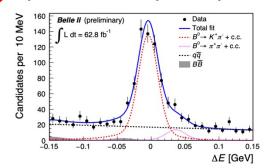
- simultaneous fit of pion- and kaon-enriched samples in ΔE to determine R^*
- kaon(pion)-enriched sample: $\mathfrak{L}(K/\pi) > (<) 0.6$

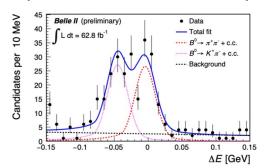

	$B^- \to D^{*0} h^-$		$\bar{B}^0 o D^{*+}h^-$	=
Belle II $R^{*+/0}$ (×10 ⁻²)	$6.80 \pm 1.01 \pm 0.07$		$5.99 \pm 0.82 ^{+0.17}_{-0.08}$	
LHCb $R^{*+/0} \ (\times 10^{-2})$	$7.93 \pm 0.11 \pm 0.56$ [24]		$7.76 \pm 0.34 \pm 0.26$ [26]	6]

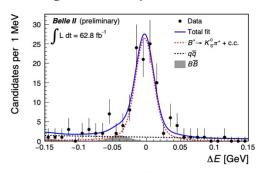

Results compatible with world average values!



CPV in multibody decays




all channels

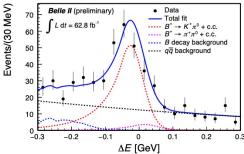

11

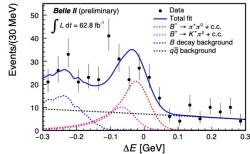
$\begin{array}{c} \text{Two-body: } B^{+,0} \to h^+\pi^-, \ h^+\pi^0, \ K_S^0\pi^+ \\ \text{Unique Belle II capability to study all the } B \to K\pi \text{ decays to investigate isospin sum-rules.} \\ & \stackrel{\text{Selle II (preliminary)}}{\underset{\text{Selle II (prelimina$

Probe of tracking and PID performances.

$$N(B^0 \to K^+\pi^-)$$
: 568 $^{+29}_{-28}$

$$-28$$
 $[10^{-6}]$: 18 0 + 0 9(stat) + 0 9(svet)


$$N(B^0 \to \pi^+\pi^-)$$
: 115 $^{+14}_{-13}$


$$\mathscr{B}$$
 [10⁻⁶]: 18.0 ± 0.9(stat) ± 0.9(syst) 5.8 ± 0.7(stat) ± 0.3(syst)

Benchmark of K_s^0 reconstruction

$$N(B^+ \to K_S^0 \pi^+)$$
: 103 $^{+11}_{-10}$

$$21.4^{+2.3}_{-2.2}$$
(stat) ± 1.6 (syst)

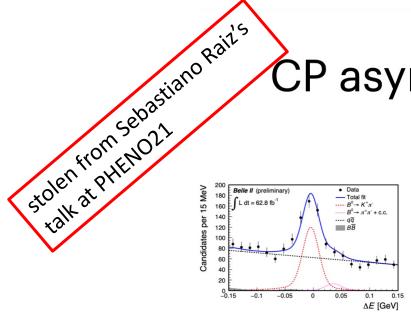
Challenge of π^0 reconstruction performances, require good PID.

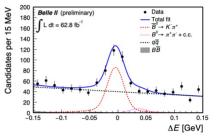
$$N(B^+ \to K^+ \pi^0)$$
: 211 $^{+18.8}_{-18}$

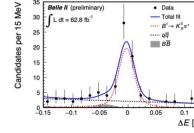
$$11.9^{+1.1}_{-1.0}$$
(stat) ± 1.6 (syst)

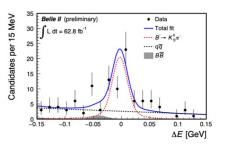
$$N(B^+ \to \pi^+ \pi^0)$$
: 83.9 $^{+14.7}_{-13.9}$

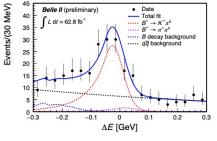
$$5.5^{+1.0}_{-0.9}$$
(stat) ± 0.7 (syst)

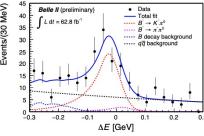

 \mathscr{B} [10⁻⁶]:

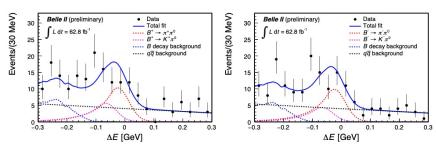

$$5.5^{+1.0}_{-0.9}(\text{stat}) \pm 0.7(\text{syst})$$


17

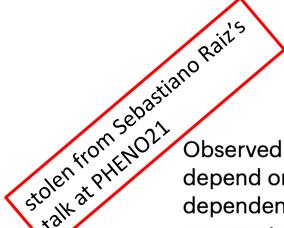

CP asymmetries in two-body decays






$$A_{CP}(B^0 \to K^+\pi^-) = -0.16 \pm 0.05 \text{(stat)} \pm 0.01 \text{(syst)}$$

$$A_{CP}(B^+ \to K^0 \pi^+) = -0.01 \pm 0.08(\text{stat}) \pm 0.05(\text{syst})$$

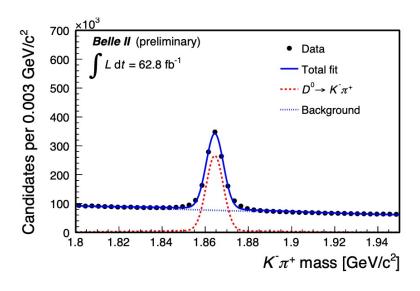

$$A_{CP}(B^+ \to \pi^+ \pi^0) = -0.04 \pm 0.17 \text{(stat)} \pm 0.06 \text{(syst)}$$

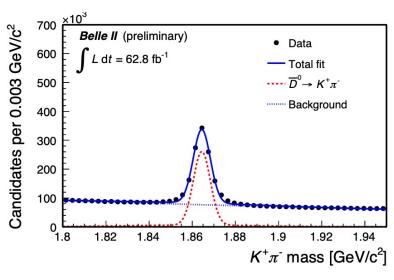
18

syst. uncertainties: 1) branching ratios

- Tracking efficiency: 0.91% per charged track as suggested by TG
- K_s rec. efficiency: 1% per cm average flight length
- PID/CS efficiency: stat. uncert. of selection efficiency using control channel $B^- \to D^0$ ($\to K^+\pi^-$) π^-
- N_{BB} : combination of uncertainties in \mathcal{L} , $\sigma(\Upsilon(4S))$, f_{00} (f_{+}) and beam energy spread \rightarrow 2.7 %
- Signal modeling:
 - **a. shape**: fit with 2 Gaussians instead, difference as systematic
 - **b. nCDCHits mismodeling:** require > 4 hits in CDC for each track, difference as systematic
- Background modeling: fit with first order poly. instead, difference as systematic
- **Peaking background**: fix peak. bkg. ratio instead of floating, difference as systematic

Instrumental asymmetries




Observed charge-dependent signal yields depend on CP violation but also on charge-dependent instrumental reconstruction asymmetries (K+/K- ecc) that need be corrected for CP violation measurements

$$\mathcal{A} = \mathcal{A}_{CP} + \mathcal{A}_{det}$$

Tree-dominated hadronic D decays $D^+ \rightarrow K_S$ π^+ and $D^0 \rightarrow K^-\pi^+$ restricted to charmless-like kinematics to determine instrumental asymmetries on data. CPV in charm tree decays assumed inexistent or irrelevant.

$$egin{aligned} \overline{\mathcal{A}_{
m det}(K^+\pi^-)} & -0.010 \pm 0.001 \\ \mathcal{A}_{
m det}(K^0_{
m S}\pi^+) & +0.026 \pm 0.019 \\ \mathcal{A}_{
m det}(K^+) & +0.017 \pm 0.019 \\ \mathcal{A}_{
m det}(\pi^+) & +0.026 \pm 0.019 \end{aligned}$$

