Latest dark sector searches at the Belle Experiment

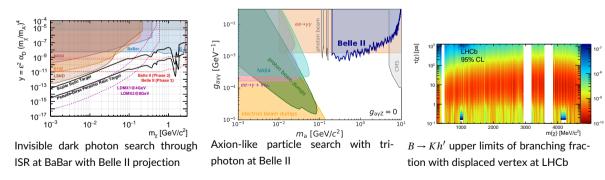
Seokhee Park

seokhee.park@kek.jp

KEK

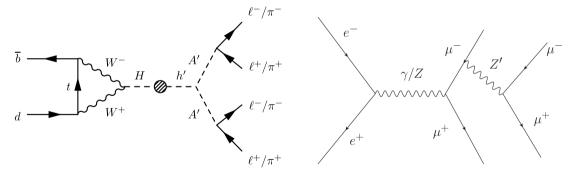
on behalf of the Belle collaboration

2021 July 26th


EPS-HEP 2021

Introduction

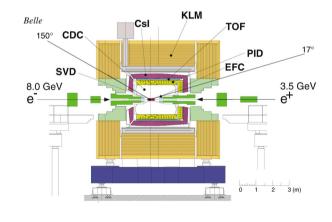
- *B*-factories are also strong observatory of various dark sector candidates
 - Precise \sqrt{s} , high luminosity, clean event signature
- → Various scenarios can be tested: visible, invisible, vertex displacement, colored


Introduction


$\blacksquare B^0 \to A'A'$

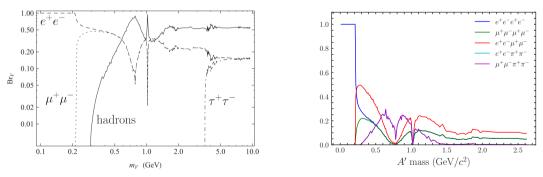
- ► *A*': visible, prompt-decaying dark photon
- h': virtual dark Higgs coming from kinetic mixing with H, decaying into A' pair

$$\bullet e^+e^- \to \mu^+\mu^- Z'_{L_{\mu}-L_{\tau}} \to 4\mu$$


- Assume prompt decay
- Reconstruct $Z' \rightarrow \mu^+ \mu^-$ only

■ 1040 fb⁻¹ of data was collected by Belle

► 711 fb⁻¹ of $\Upsilon(4S) = 772 \times 10^6 B\overline{B}$


EPS-HEP 2021

$B^0 \rightarrow A'A'$: Introduction [JHEP 04 (2021) 191]

In this analysis, short-lived and 100% visible dark photon is assumed.

Target final states

- ► 5 decay modes (4*e*, 2*e*2 μ , 4 μ , 2*e*2 π , and 2 μ 2 π) to combine $B^0 \rightarrow A'A'$
- ▶ Kinematically allowed A' mass (10 2620 MeV) with 10 20 MeV interval

Relative A' branching fraction [PRD 79, 115008]

Relative B^0 branching fraction for each final state

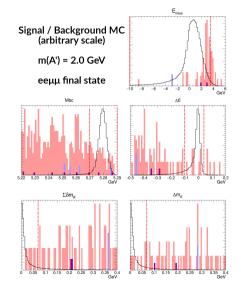
EPS-HEP 2021

$B^0 \rightarrow A'A'$: Background suppression

■ Possible SM resonances to be identified by A' are rejected

- ► $J/\psi, \psi(2S) \rightarrow \ell^+ \ell^-$
- ▶ $D^0 \rightarrow \pi^+ \pi^-$, including $K^- \pi^+$ with misidentified K^{\pm}
- Light mesons (K_s , ρ^0 , ϕ , etc.)

• $e^+e^- \rightarrow q\overline{q}$ suppression using 16 event shape variables

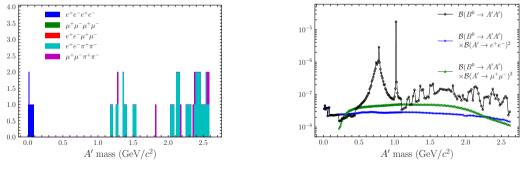

- Including B⁰ cand. momentum direction, angle between trhust axis of B⁰ cand. and other particles, and (modified) Fox-Wolfram moments
- Only applied for $\ell^+ \ell^- \pi^+ \pi^-$ final states
- Fisher discriminant training is performed by TMVA

Small amount of combinatorial backgrounds

- Leptons are mostly from semi-leptonic decay of quarks
- \rightarrow missing energy from neutrinos

$B^0 \rightarrow A'A'$: Event reconstruction

- Require at least 4 charged tracks, including at least one e⁺e⁻ or μ⁺μ⁻ pair
 - Each track should appear near the intraction point with good track fitting
- After combining A' and B⁰, five variables are used to judge the quality of B⁰
 - ▶ *M*_{bc}: beam-constrained mass
 - ΔE : energy difference b/w beam and B cand.
 - Missing energy of an event
 - $\Delta M_{A'}: |M_{A'_1} M_{A'_2}|$
 - $\Sigma \delta M_{A'}: |M_{A'_1} m_{A'}| + |M_{A'_2} m_{A'}|$
 - $M_{A'_{1,2}}$: reconstructed $A'_{1,2}$ mass
 - $m_{A'}$: target A' mass



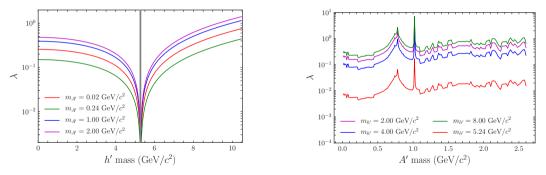
EPS-HEP 2021

Seokhee Park @ KEK

$B^0 \rightarrow A'A'$: Results

- \blacksquare No significant access to the signal \rightarrow upper limits are obtained
- Calculate upper limits using Feldman-Cousins unified approach (clean background)
 - Mostly $\mathcal{O}(10^{-8} 10^{-7})$ of U.L.
 - ▶ Near the light meson rejection region, up to $O(10^{-5})$

Observed events in Belle data

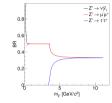

90% C.L. upper limits of branching fraction

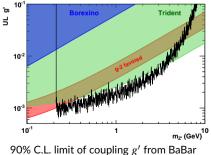
Seokhee Park @ KEK

$B^0 \rightarrow A'A'$: Results

Higgs portal coupling λ is derived by the following equation: [PRD 83 054005]

$$\mathcal{B}(B^0 \to A'A') \simeq 7 \times 10^{-7} \times \lambda^2 \times V_{A'A'}^{1/2} \times \frac{V_{A'A'} + 12m_{A'}^4/m_{B^0}^4}{(1 - m_{h'}^2/m_{B^0}^2)^2}, \ V_{A'A'} = 1 - 4m_{A'}^2/m_{B^0}^2 \tag{1}$$


90% C.L. limits of λ versus h' mass for various A' mass


90% C.L. limits of λ versus A' mass for various h' mass

$e^+e^- ightarrow \mu^+\mu^- Z'_{L_{\mu}-L_{ au}}$: Introduction

■ $Z'_{L_{\mu}-L_{\tau}}$ can be [PRD 89 113004]

- a source of muon g-2 anomaly
- an accessing channel for sterile neutrinos (dark matter candidate)
- The target final state is $Z' \rightarrow \mu^+ \mu^-$ within kinematically allowed mass range
 - The branching ratio of $Z' \sim 0.5$ and $Z' \sim 0.33$ for each below and above $\tau^+ \tau^-$ threshold
 - ► Full Belle dataset (~ 1 ab⁻¹) is used
- Z' coupling was obtained by BaBar [PRD 94 011102]
 - Belle also try to give a same g' result

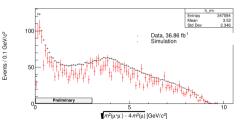
$e^+e^- ightarrow \mu^+\mu^- Z'_{L_{\mu}-L_{\tau}}$: Event reconstruction

Require 4 charged tracks and sum of charge should be 0

At least, 2 same-signed tracks are identified as muon

Selection creteria

- ▶ Energy remaining in ECL without track association < 200 MeV
- ► $m_{J/\psi} \pm 30$ MeV, $m_{\Upsilon(1S)} \pm 100$ MeV rejection from di-muon invariant mass


► $e^+e^- \rightarrow a\overline{a}$

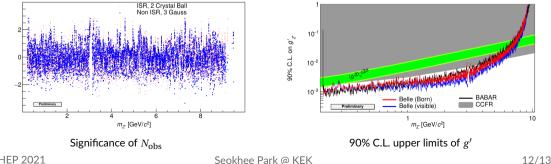
• $e^+e^- \rightarrow p\overline{p}$ or $n\overline{n}$

• 4-muon invariant mass within initial beam energy $\pm 500 \text{ MeV}$

Backgrounds in Belle data

- $\blacktriangleright \ e^+e^- \rightarrow 4\mu \qquad \qquad \blacktriangleright \ e^+e^- \rightarrow 2\mu$
- $\blacktriangleright e^+e^- \to 4\pi \qquad \qquad \blacktriangleright e^+e^- \to 2\tau$
- ► $e^+e^- \rightarrow 2e2\mu$
- ► $e^+e^- \rightarrow 2\mu 2\tau$
- $e^+e^- \rightarrow 2\mu J/\psi$ or $2\pi J/\psi$ etc.

Validation check with 36.9 fb^{-1}


$e^+e^- ightarrow \mu^+\mu^- Z'_{L_\mu-L_ au}$: Preliminary results

Signal extraction

- The coupling constant g' is obtained by Born cross section
- Born cross section is calculated by signal yield (N_{obs}) by following the equation

$$g'^{2}/g_{0}^{2} = \sigma_{\text{Born}}/\sigma_{\text{theory}}, \ \sigma_{\text{Born}} = N_{\text{obs}}/(\mathcal{L} \times \mathcal{B} \times \epsilon_{\text{rec}})$$
 (2)

where σ_{theory} is theoritical cross section by g'_0 , \mathcal{L} is int. luminosity, \mathcal{B} is branching ratio of $Z' \to \mu^+ \mu^-$, and $\epsilon_{\rm rec}$ is reconstruction efficiency. $N_{\rm obs}$ is extraced by $M_{Z'}$ fitting

FPS-HFP 2021

Summary

- No significant observation for dark sector
- **B**⁰ \rightarrow A'A' result was published on JHEP
 - ▶ 90% C.L. upper limits of branching fraction are mostly $O(10^{-8})$
 - Higgs portal coupling constraint versus m(h') and m(A') are obtained
- $e^+e^- \rightarrow \mu^+\mu^- Z'_{L_{\mu}-L_{\tau}}$ gives the limit of $Z'\ell\ell$ coupling constant
 - ► The result is competetive with BaBar

Thank you for listening!