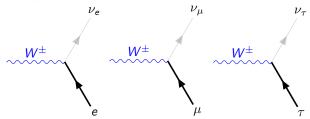


Measurement of semitauonic b-hadron decays

Biljana Mitreska

On behalf of the LHCb collaboration

Outline


- 1 Introduction
- 2 LHCb measurements
- 3 Ongoing analyses
- 4 Summary

Introduction

Semileptonic b-hadron decays provide powerful probes for testing the Standard Model(SM) and search for BSM effects

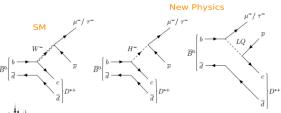
Lepton Flavour Universality (LFU) hypothesis: equal gauge bosons couplings to leptons

Simple description with a tree level diagram in the SM

Tensions in complementary lepton universality tests using rare *B* decays more details M. McCann talk at EPS

Other measurements with semi-leptonic decays - more details A. Lupato talk at EPS

$b \rightarrow c l \nu$ transitions at the LHCb experiment


 Ratios of branching fractions is one choice to test LFU

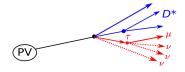
$$\mathcal{R}(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \nu)}{\mathcal{B}(H_b \to H_c \mu \nu)}$$

$$H_b = B^0, B^+, B_s, \Lambda_b^0,$$

 $H_c = D^*, D^+, D_s, \Lambda_c^0, J/\Psi$

- Neutrinos not detected at LHCb: approximation needed to reconstruct the B momentum
- $\begin{array}{ccc} \bullet & \tau \text{ decay modes used:} \\ \tau^- \to \mu^- \nu_\mu \nu_\tau \text{ and} \\ \tau^- \to \pi^+ \pi^- \pi^- \nu_\tau \end{array}$

Any discrepancy could be a clear sign of New Physics (NP)


▶ PRD 94, 034001

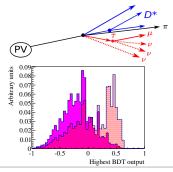
PRD 90, 074013

▶ PRD 87, 014014

$\mathcal{R}(D^*)$ with $\tau { ightarrow} \mu \nu \nu$

$$\mathcal{R}(D^*) = rac{\mathcal{B}(B o D^* au
u)}{\mathcal{B}(B o D^* \mu
u)}$$

- Discriminating kinematic variables are:
 - the muon energy E_{μ}
 - $m_{miss}^2 = (p_B p_{D^*} p_I)^2$
 - $-q^2=(p_B-p_{D^*})^2$


NDI 115 111002

• *B* momentum approximated with the relation:

$$(p_B)_z = \frac{m_B}{m_{reco}}(p_{reco})_z$$

 Isolation: reject backgrounds with additional charged tracks

$\mathcal{R}(D^*)$ with $\tau \rightarrow \mu \nu \nu$

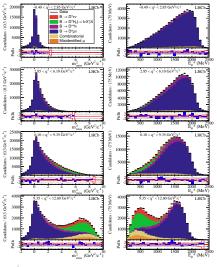
Main background contributions:

•
$$B \rightarrow D^{**}\mu\nu$$

- $B_s \rightarrow D_s \mu \nu$
- Semileptonic decays to heavier charmed hadrons decaying to $D^{**} \rightarrow D^{*+}\pi\pi$

•
$$B \rightarrow D^{**} \tau \nu$$

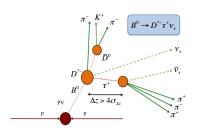
- $B \rightarrow D^{*+}H_cX$
- Hadrons (π, K, p) misidentified as muons
- Combinatorial backgrounds wrong-sign final state combinations


Fitting strategy:

- Binned maximum likelihood method with three dimensional templates representing the signal, the normalization and the background sources
- The fit extracts the relative contributions of signal and normalization modes and their form factors

$\mathcal{R}(D^*)$ with $\tau \rightarrow \mu \nu \nu$

 $\mathcal{R}(D^*) = 0.336 \pm 0.027(stat) \pm 0.030(syst)$


Dominant systematics:

- Statistical uncertainty of the simulated samples
- Backgrounds from hadrons misidentified as muons
- 2.1σ greater than the SM expectation: 0.252 ± 0.003

▶ PRL 115 111803

$\mathcal{R}(D^*)$ with $\tau \rightarrow \pi\pi\pi\nu$

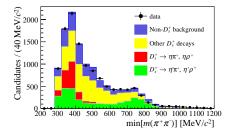
$$\mathcal{R}(D^*) = rac{\mathcal{B}(B
ightarrow D^* au
u)}{\mathcal{B}(B
ightarrow D^* \mu
u)}$$

• $B^0 \to D^{*-}\pi^+\pi^-\pi^+$ is taken as normalization

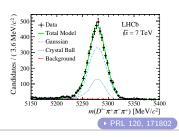
$$\kappa(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* - 3\pi)}$$
$$\mathcal{R}(D^*) = \kappa(D^*) \frac{\mathcal{B}(B \to D^* 3\pi)}{\mathcal{B}(B \to D^* \mu \nu)}$$

B and τ momentum approximated by looking at the two solutions approach → PRD 97, 072013

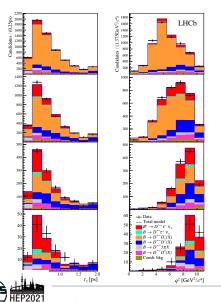
Main background contributions:


- $B \to D^{*-}3\pi X$ 3π detached-vertex requirement
- Double charm backgrounds $(B \to D^{*-}D_s^+X, B \to D^{*-}D^+X,$ $B \to D^{*-}D^0X$) - suppression via MVA(BDT)

$R(D^*)$ with $\tau \rightarrow \pi \pi \pi \nu$


- Backgrounds from D_s⁺ are determined from a fit to data
- Simultaneous fit to the invariant masses of: oppositely charged pions, same-charge pion pair and the 3π system

Signal extraction:


- q^2 , τ decay time and BDT used as discriminating variables
- Fitting strategy: binned fit to q^2 , τ decay time and BDT

Normalization extraction:

$R(D^*)$ with $\tau \rightarrow \pi \pi \pi \nu$

 $\mathcal{R}(D^*) = 0.280 \pm 0.018(stat) \pm 0.029(syst)$

Dominant systematics:

- Modeling of different background sources
- MC statistics of templates
- $B \to D^* \tau \nu$ form factors
- \bullet $\ \tau$ polarization effects
- Possible contributions from other τ decay modes
- 1σ higher than the SM prediction

▶ PRL 120, 171802

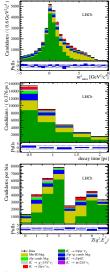
$\mathcal{R}(J/\Psi)$ with $\tau \rightarrow \mu \nu \nu$

$$\mathcal{R}(J/\Psi) = \frac{\mathcal{B}(B_c \to J/\Psi au
u)}{\mathcal{B}(B_c \to J/\Psi \mu
u)}$$

- First study of the semitauonic decay $B_c \to J/\Psi \tau \nu$
- FFs determined directly from data
- Recent FF predictions from theory: > arXiv: 2007.06956

Main backgrounds:

- $B_c \to H_c X$ modeled using a cocktail of two-body decays that proceed through excited D_s
- Combinatorial background from $B_{u,d,s} \to J/\Psi X$
- Pairs of muons to form a J/Ψ
- mis-ID π or K is misidentified as a μ


Fit strategy: binned fit to the m_{miss}^2 , B_c decay time and the quantity Z

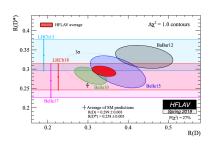
• Z contains 8 bins in E_{μ} and q^2 (first 4 bins with $q^2 < 7.14~{\rm GeV^2}$, the rest $q^2 > 7.14 \text{ GeV}^2$)

EPS HEP 2021

$\mathcal{R}(J/\Psi)$ with $\tau \rightarrow \mu \nu \nu$

$$\mathcal{R}(J/\Psi) = 0.71 \pm 0.17 ext{(stat)} \pm 0.18 ext{(syst)}$$

Main systematics:


- $B_c \to J/\Psi$ form factors
- Z binning strategy
- mis-ID and combinatorial backgrounds

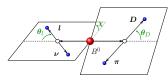
 2σ higher than the SM prediction

▶ PRL 120, 121801

Future prospects and ongoing analyses

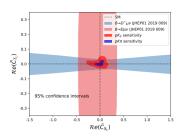
- 3 σ tension with the SM prediction
- LHCb contribution with R(D*)
 muonic and hadronic and R(J/Ψ)

Analyses in progress (Run 1 and Run 2 data):


- R(D⁺)
- $\mathcal{R}(D^*)$ (electron muon)
- Combined measurement $\mathcal{R}(D^*)$ $\mathcal{R}(D^0)$
- R(D**)
- $\mathcal{R}(D_s^*)$
- R(J/Ψ)
- R(Λ_c*)

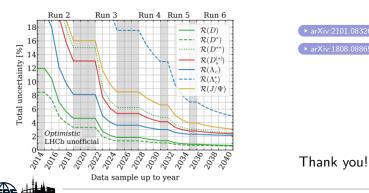
Future prospects and ongoing analyses

Angular analyses:


 Angles feature the decay rate and are sensitive to NP

- Study potential NP scenarios and their sensitivity
- $B o D^* \mu(au)
 u$ hadronic and muonic
- $\Lambda_b \to \Lambda_c \mu \nu$ JHEP 12 148(2019)

 Operators with unknown coupling constants can be written in an effective Hamiltonian


$$H_{eff} = \frac{G_F}{\sqrt{2}} V_{cb} \sum_{i} C_i O_i$$
$$C_i = C_i^{SM} + C_i^{NP}$$

Summary

- Semileptonic decays can give us hints towards BSM physics
- LHCb has performed several LFU measurements with Run 1 data
- Ongoing analyses make use of Run 2 data measuring ratios and exploiting the angular structure of the decays
- Run 3 data-taking period from 2022 systematic uncertainties at LHCb to scale with the accumulated sample size

15

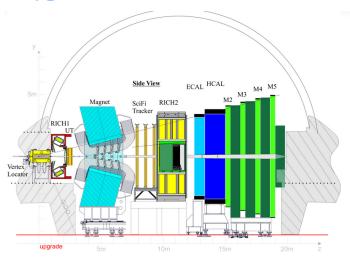
BACKUP

$\mathcal{R}(D^*)$ with $au o \mu u u$ systematic uncertainties

Model uncertainties	Absolute size (×10 ⁻²)
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\bar{B}^0 \to D^{*+}(\tau^-/\mu^-)\bar{\nu}$ form factors	0.6
$\bar{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	s 0.5
$\mathcal{B}(\bar{B} \to D^{**}\tau^-\bar{\nu}_{\tau})/\mathcal{B}(\bar{B} \to D^{**}\mu^-\bar{\nu}_{u})$	0.5
$\bar{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\bar{B} \to D^{**} (\to D^{*+} \pi) \mu^- \bar{\nu}_{\mu}$ form factors	0.3
$\bar{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form factors	0.2
$\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

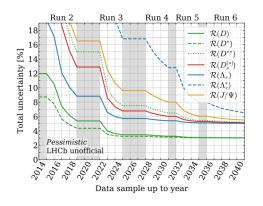
$\mathcal{R}(D^*)$ with $au o \pi\pi\pi u$ systematic uncertainties

Source	$\delta R(D^{*-})/R(D^{*-})[\%]$
Simulated sample size	4.7
Empty bins in templates	1.3
Signal decay model	1.8
$D^{**} \tau \nu$ and $D_s^{**} \tau \nu$ feeddowns	2.7
$D_s^+ \to 3\pi X$ decay model	2.5
$B \to D^{*-}D_s^+X$, $B \to D^{*-}D^+X$, $B \to D^{*-}D^0X$ backgrounds	3.9
Combinatorial background	0.7
$B \rightarrow D^{*-}3\pi X$ background	2.8
Efficiency ratio	3.9
Normalization channel efficiency (modeling of $B^0 \to D^{*-}3\pi$)	2.0
Total uncertainty	9.1



$\mathcal{R}(J/\Psi)$ with $\tau \rightarrow \mu \nu \nu$ systematic uncertainties

Source of uncertainty	Size (×10 ⁻²)
Limited size of simulation samples	8.0
$B_c^+ \rightarrow J/\psi$ form factors	12.1
$B_c^+ \rightarrow \psi(2S)$ form factors	3.2
Fit bias correction	5.4
Z binning strategy	5.6
Misidentification background strategy	5.6
Combinatorial background cocktail	4.5
Combinatorial J/ψ sideband scaling	0.9
$B_c^+ \rightarrow J/\psi H_c X$ contribution	3.6
Semitauonic $\psi(2S)$ and χ_c feed-down	0.9
Weighting of simulation samples	1.6
Efficiency ratio	0.6
$B(\tau^+ \rightarrow \mu^+ \nu_\mu \overline{\nu}_\tau)$	0.2
Total systematic uncertainty	17.7
Statistical uncertainty	17.3



LHCb upgraded detector

LHCb upgrade prospects

