

CKM parameter measurement with semileptonic B_s decays at LHCb

Anna Lupato

The University of Manchester

on behalf of the LHCb Collaboration

EPS-HEP Conference 2021, July 26-30,2021

Measurement of $|V_{xb}|$

Lнср

- The parameters of the CKM matrix must be constrained in order to
 - test the unitarity of the CKM matrix
 - precisely measure the amount of CP violation in the quark sector
 - \rightarrow measurement of observables sensitive to the magnitudes of CKM matrix elements

- Measurements of $|V_{_{xb}}|$ provide a crucial input for indirect searches of New Physics
- Discrepancy between exclusive and inclusive measurements: $\approx 3\sigma$ tension
 - \rightarrow new complementary measurements needed

Measurement of $|V_{xb}|$

- $|V_{ub}|$ and $|V_{cb}|$ measurement have been made using the semileptonic *b* hadron decays
 - The contributions to decay rate can be factorized into the weak and strong parts

 → The theoretical calculation are simplified;

$$\frac{d\Gamma(B_s \rightarrow H l\nu)}{dq^2} \propto G_F^2 |V_{xb}|^2 |f(q^2)^2$$

• Experimentally challenging

- Two main ways to measure $|V_{_{ub}}|$ and $|V_{_{cb}}|\text{:}$
 - Inclusive decays:
 - $B^+ \rightarrow X_c l\nu, B^0 \rightarrow X_u l\nu$
 - Focus on all final states
 - Need to know QCD correction to parton level decay rate
 - Operator Product Expansion in $\alpha_{_{\rm S}}$ and $\Lambda_{_{\rm QCD}}/m_{_{b,c}}$ predicts the total rate $\Gamma_{_{\rm C}}$
 - Challenges: background contamination and model of shape functions
 - Exclusive decays (next slide)

• Exclusive decays:

- Focus on a single final state
- Exclusive determinations rely on form factors (FF) to parameterize hadronic current as function of $q^2 (\mu \nu \text{ invariant mass})$
 - Lattice QCD (LQCD) or QCD sum rules
 - Extracted in experimental measurement from data
- Challenges: possibly small signal yields and knowledge of form factors.
- Ground state hadrons in the final state are the golden modes for lattice QCD predictions and have the lowest theoretical uncertainties.
- $B \rightarrow D^*/Dl\nu, B \rightarrow \pi l\nu$
- $B_{_{\rm S}}$ decays are advantageous compared to $B^{_0/\!+}$
 - Easier to calculate in LQCD due to heavier spectator quark \rightarrow more precise predictions
 - For the $B_{_s} \to D_{_s} ^*:$ the zero-width approximation of the $D_{_s} ^*$ should work better than the B case (no $D\pi$ pollution)

- First observation of the decay $B_s^0 \to K^-\mu^+\nu$ and a measurement of $|V_{ub}|/|V_{cb}|$ [Phys. Rev. Lett. 126 081804]
- (Measurement of $|V_{cb}|$ with $B_s^{0} \rightarrow D_s^{*-}\mu^+\nu$ decays [Phys. Rev. D 101 072004])

- Dataset: pp collision events collected by LHCb experiment during 2012, 2 fb⁻¹ @ 8TeV
- Signal: $B_s^0 \rightarrow K^-\mu^+\nu$
- Normalization: $B_s^0 \rightarrow D_s^- \mu^+ \nu$ where $D_s^- \rightarrow K^+ K^- \pi^-$
- CKM extraction strategy:

- The $|V_{_{ub}}|/|V_{_{cb}}|$ ratio is derived in two regions of q^2 ($\mu\nu$ invariant mass) to exploit different FF $_{_{K}}$ calculation method
 - Light cone sum rules (LCSR) @ low q^2 ($q^2 < 7 \text{ GeV}^2/c^4$)
 - LQCD @ high q^2 ($q^2 > 7 \text{ GeV}^2/c^4$)
- Normalization mode FF_{Ds} fully described by LQCD [Phys Rev D. 101 074513]

- Lattice QCD predictions provide a precise determination of the form factors at low recoil transfer (high q²) [Phys. Rev. D 90, 054506] [Phys. Rev. D 91, 074510] [Phys. Rev. D 100, 034501]
- Calculations from QCD light-cone sum rules are most precise at large recoil (low q^2) [JHEP 08 (2017) 112]

The backgrounds

- $B_s^0 \rightarrow K^- \mu^+ \nu$
 - main background originates from $H_{b} \rightarrow H_{c}(\rightarrow K^{-}X)\mu^{+}X'$ (unreconstructed particles)
 - $B_s^0 \rightarrow K^{*-} (\rightarrow K^- \pi^0) \mu^+ \nu$
 - $B_s^0 \rightarrow [cc]^- (\rightarrow \mu^+ \mu^-) K^- X$
- $B_s^0 \rightarrow D_s^- \mu^+ \nu$
 - $B_s^0 \rightarrow D_s^{*} (\rightarrow D_s \gamma) \mu^+ \nu$
 - $B_s^{\ 0} \rightarrow D_s^{\ **-}\mu^+\nu$, $B_{u,s,d} \rightarrow D_sDX$ and $B_s^{\ 0} \rightarrow D_s^{\ *-}\tau^+\nu$
- To suppress background

- the candidates are required to be isolated from the other tracks in the event
- BDT classifiers exploit the kinematics of the decays
- The $B_s^{\ 0}$ momentum can be calculated with a two fold ambiguity \rightarrow regression model that exploit the B_s flight information [JHEP 02 (2017) 021]
 - Ambiguity solved by selection the solution most consistent with the regression value
 - ε ≈ 70%

• The measured ratio is

$$R_{\rm BF} \equiv \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_{\mu})}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_{\mu})} = \frac{N_K}{N_{D_s}} \underbrace{\frac{\mathcal{E}_{D_s}}{\mathcal{E}_K}}_{\text{(Prog. Theor. Exp. Phys. 2020, 083C01 (2020)]}} \\ \underset{\text{Efficiency}}{\text{Efficiency}}$$

• A binned maximum likelihood fit to the B_s corrected mass

$$m_{\mathrm{corr}} = \sqrt{m^2(Y\mu) + p_{\perp}^2(Y\mu)} + p_{\perp}(Y\mu), \ Y = K^-, D_s^ B_s$$
 μ
 $X\mu$
 p_{\perp}
 p_{\perp}
 p_{\perp}
 p_{\perp}
 ν_1
 ν_2
 p_{\perp}

- If only missing particle is a neutrino the corrected mass distribution will peak at the ${\rm B}_{\rm s}$ mass
- the resolution on the corrected mass is significantly improved if one rejects events with a large corrected mass uncertainty (>100 MeV/c^2)

Signal and normalization fits [Phys. Rev. Lett. 126 081804]

 $B^0_s
ightarrow D^-_s \mu^+
u_\mu$

- The largest systematical uncertainty is from the fit templates
- First observation of the decay $B_s^0 \rightarrow K^-\mu^+\nu$

$|\mathbf{V}_{ub}| / |\mathbf{V}_{cb}|$ results

Phys. Rev. Lett. 126 081804

• The obtained values are

$$rac{\mathcal{B}\left(B_{s}^{0}
ightarrow K^{-}\mu^{+}
u_{\mu}
ight)}{\mathcal{B}\left(B_{s}^{0}
ightarrow D_{s}^{-}\mu^{+}
u_{\mu}
ight)}=rac{\left|V_{ub}
ight|^{2}}{\left|V_{cb}
ight|^{2}} imesrac{\mathrm{FF}_{K}}{\mathrm{FF}_{D_{s}}} {}_{\mathrm{Theory}}$$

• q²>7 GeV²/c⁴:

• q²<7 GeV²/c⁴

$$\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = 1.66 \pm 0.08(\textit{stat}) \pm 0.07(\textit{syst}) \pm 0.05(D_s) \times 10^{-3}$$
$$\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = 3.25 \pm 0.21(\textit{stat})^{+0.16}_{-0.17}(\textit{syst}) \pm 0.09(D_s) \times 10^{-3}$$

 $|V_{ub}|/|V_{cb}|_{(\mathrm{low})} = \ 0.0607 \pm 0.0015(\mathrm{stat}) \pm 0.0013(\mathrm{syst}) \ \pm 0.0008(D_s) \pm 0.0030(\mathrm{FF})$

 $|V_{ub}|/|V_{cb}|_{(ext{high})} = \ 0.0946 \pm 0.0030(ext{stat})^{+0.0024}_{-0.0025}(ext{syst}) \pm 0.0013(D_s) \pm 0.0068(ext{FF})$

- First observation of the decay $B_{s}{}^{0} \to K^{\cdot}\mu^{+}\nu$ and a measurement of $|V_{ub}|/|V_{cb}|$ [Phys. Rev. Lett. 126 081804]
- (Measurement of $|V_{cb}|$ with $B_s^0 \rightarrow D_s^{(*)} \mu^+ \nu$ decays [Phys. Rev. D 101 072004])

- Dataset: 1 fb⁻¹ @ 7TeV 2 fb⁻¹ @ 8TeV
- Signal: $B_s^{\ 0} \rightarrow D_s^{\ (*)} \mu^+ \nu$ where $D_s \rightarrow K^+ K^- \pi^-$
- Normalization: $B^0 \rightarrow D^{(*)} \mu^+ \nu$
- Extract $|V_{cb}|$ from $\mathcal{R}^{(*)} = \frac{\mathcal{B}(B_s^0 \rightarrow D_s^{(*)} \mu^+ \nu_{\mu})}{\mathcal{B}(B^0 \rightarrow D^{(*)} \mu^+ \nu_{\mu})}$

external input: hadronization fractions f_s/f_d [PRD(2019)031102] and branching fraction[PDG]

- Use variable $p_{\perp}(D_s)$: high correlated with hadron recoil and fully recostructible

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$$

- 2-D template fit to $M_{_{corr}}$ and $p_{\perp}(D_{_{s}})$ identify the signal yields and provides a simultaneous measurement of the ratios R(*) and the form factors
- Parametrizations used: CLN and BGL

• The results are

- $|V_{cb}|_{CLN} = (41.1 \pm 0.6(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$ $|V_{cb}|_{BGL} = (42.3 \pm 0.8(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$
- First measurement of $|V_{cb}|$ using B_s
- First measurement of $|V_{\rm cb}|$ at an hadronic environment
- Compatible with world average for both inclusive and exclusive determinations
- Confirms trend that parametrisation is not responsible for inclusive vs exclusive disagreements
- New $f_s/f_d \rightarrow new updated V_{cb}$ [arXiv:2103.06810]

 $egin{aligned} |V_{cb}|_{CLN} &= (40.8 \pm 0.6(stat) \pm 0.9(syst) \pm 1.1(ext)) imes 10^{-3} \ |V_{cb}|_{BGL} &= (41.7 \pm 0.8(stat) \pm 0.9(syst) \pm 1.1(ext)) imes 10^{-3} \end{aligned}$

- LHCb performed the first measurements of $|V_{_{ub}}|$ and $|V_{_{cb}}|$ using the $B_{_s}{}^{_0}$ decays.
- The ratio $|V_{ub}|/|V_{cb}|$ has been measured using the $B_s^{0} \rightarrow K^-\mu^+\nu$ in two q^2 bins:
 - Discrepancy found between low and high q² bins.
 - The ratio found in the high q^2 bin is compatible with previous measurement
- Planned measurement of differential q^2 spectrum of $B_{_s}{}^{_0} \to K^\cdot\!\mu^+\nu$ with full Run 1 + Run 2 data
- The $|V_{_{\rm cb}}|$ parameter has been measured using $B_{_{\rm s}}{}^{_{0}} \rightarrow D_{_{\rm s}}{}^{(*)}{}^{_{-}}\mu^{+}\nu$:
 - It results in agreement with previous exclusive and inclusive measurement from B decays
- Inclusive-Exclusive puzzle has to be understood
- Several other $|V_{_{ub}}|$ and $|V_{_{cb}}|$ analyses in the pipeline using $B_{_c} \rightarrow D^{_{0(*)}}\mu\nu$ and $B^+ \rightarrow \rho\mu\nu$ decays \rightarrow theoretical FF predictions needed