Measurements of the CKM angle γ (and friends) at LHCb

Mark Whitehead

on behalf of the LHCb collaboration

Science and
Technology
Facilities Council

Introduction

- Why are we (still) measuring γ ?

- Standard candle measurement of the SM
- Tree-level decays, theoretically simple
- We really measure γ not $\gamma \pm \Delta_{S M}$
- Negligible SM uncertainties $\sim\left(10^{-7}\right)^{0}$
- Still room for some NP though
- Indirect measurements from CKM fits
$. \gamma=(65.8 \pm 2.2)^{\circ}, \gamma=\left(65.55_{-2.65}^{+0.90}\right)^{\circ}$
- Previous measurement from LHCb

$$
\gamma=\left(74.0_{-5.8}^{+5.0}\right)^{\circ} \quad \text { LHCb-CONF-2018-002 }
$$

Measuring γ

- Interference effects

- Two amplitudes giving the same final state: $b \rightarrow c W\left(V_{c b}\right)$ and $b \rightarrow u W\left(V_{u b}\right)$
- Golden mode $B^{ \pm} \rightarrow D K^{ \pm}$

Ratio of magnitudes
and phase difference for D decay amplitudes

Ratio of magnitudes and phase difference for B decay amplitudes

LHCb γ (+ charm?) combination

- Historically taken HFLAV global charm fit as an input $\left(x_{D}, y_{D}, r_{D}, \delta_{D}\right)$

- External constraints for two body D decay modes and mixing corrections across the board - $B^{-} \rightarrow D h^{-}, D \rightarrow K^{ \pm} \pi^{\mp}$ decays have good sensitivity to $\delta_{D}^{K \pi}$ (if γ, δ_{B} are well measured)
- Why not just measure $\delta_{D}^{K \pi}$?
- Measuring just $\delta_{D}^{K \pi}$ requires inputs for x_{D}, y_{D}, r_{D}
- These in turn depend on the strong phase
- So, the most robust option is to use LHCb charm + beauty data to constrain all four parameters
- This combined input can be used by HFLAV etc

LHCb γ (+ charm?) combination

- Historically taken HFLAV global charm fit as an input ($x_{D}, y_{D}, r_{D}, \delta_{D}$)

- External constraints for two body D decay modes and mixing corrections across the board
- $B^{-} \rightarrow D h^{-}, D \rightarrow K^{ \pm} \pi^{\mp}$ decays have good sensitivity to $\delta_{D}^{K \pi}$ (if γ, δ_{B} are well measured)
- Strong correlation between y_{D} and $\delta_{D}^{K \pi}$
- Originates from the fact one typically measures $y_{D} \cos \delta_{D}^{K \pi}$
- Allows for a large corresponding improvement in the measurement of y_{D}

$$
y_{D} \equiv \frac{\Delta \Gamma}{2 \Gamma}
$$

LHCb γ and charm combination

- Large update since the previous paper

- LHCb γ and charm combination
- Many new and updated inputs

- Follow a frequentist procedure

- Described in details in the previous paper - JHEP 12 (2016) 087
- Combine 151 observables
- Determine 52 parameters

B decay	D decay	Ref.	Dataset	Status since Ref. [22]
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} h^{-}$	$[24]$	Run 1\&2	Updated
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	$[25]$	Run 1	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow h^{+} h^{-} \pi^{0}$	$[26]$	Run 1	As before
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K_{S}^{0} h^{+} h^{-}$	$[23]$	Run 1\&2	Updated
$B^{ \pm} \rightarrow D h^{ \pm}$	$D \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$	$[27]$	Run 1\&2	Updated
$B^{ \pm} \rightarrow D^{*} h^{ \pm}$	$D \rightarrow h^{+} h^{-}$	$[24]$	Run 1\&2(*)	Updated
$B^{ \pm} \rightarrow D K^{* \pm}$	$D \rightarrow h^{+} h^{-}$	$[28]$	Run 1\&2(*)	As before
$B^{ \pm} \rightarrow D K^{* \pm}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	$[28]$	Run 1\&2(*)	As before
$B^{ \pm} \rightarrow D h^{ \pm} \pi^{+} \pi^{-}$	$D \rightarrow h^{+} h^{-}$	$[29]$	Run 1	As before
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow K^{+} \pi^{-}$	$[30]$	Run 1\&2(*)	Updated
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow h^{+} \pi^{-} \pi^{+} \pi^{-}$	$[30]$	Run 1\&2(*)	New
$B^{0} \rightarrow D K^{+} \pi^{-}$	$D \rightarrow h^{+} h^{-}$	$[31]$	Run 1	Superseded
$B^{0} \rightarrow D K^{* 0}$	$D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$	$[32]$	Run 1	As before
$B^{0} \rightarrow D D^{\mp} \pi^{ \pm}$	$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$	$[33]$	Run 1	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$	$D_{s}^{+} \rightarrow h^{+} h^{-} \pi^{+}$	$[34]$	Run 1	As before
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm} \pi^{+} \pi^{-}$	$D_{s}^{+} \rightarrow h^{+} h^{-} \pi^{+}$	$[35]$	Run 1\&2	New
-	$D \rightarrow h^{+} h^{-}$	$[36-38]$	Run 1\&2	New
-	$D \rightarrow h^{+} h^{-}$	$[39]$	Run 1	New
-	$D \rightarrow h^{+} h^{-}$	$[40-43]$	Run 1\&2	New
-	$D \rightarrow K^{+} \pi^{-}$	$[44]$	Run 1	New
-	$D \rightarrow K^{+} \pi^{-}$	$[45]$	Run 1\&2(*)	New
-	$D \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	$[46]$	Run 1	New
-	$D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$	$[47,48]$	Run 1\&2	New
-	$D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$	$[49]$	Run 1	New
-				

LHCb γ and charm combination

- Large update since the previous paper

- LHCb γ and charm combination
- Many new and updated inputs

- Follow a frequentist procedure

- Described in details in the previous paper - JHEP 12 (2016) 087
- Combine 151 observables
- Determine 52 parameters

Most sensitive inputs for γ published last year

LHCb-CONF-2021-001
JHEP 04 (2021) 081

26/07/2021

Headline results

- Results

- First simultaneous fit for charm and beauty parameters

Observables: 151
Parameters: 52
Fit probability: 67\%

LHCb-CONF-2021-001

$$
x_{D}=\left(4.00_{-0.53}^{+0.52}\right) \times 10^{-3}, y_{D}=\left(6.30_{-0.30}^{+0.33}\right) \times 10^{-3}
$$

World average (HFLAV) $x_{D}=\left(4.09_{-0.49}^{+0.48}\right) \times 10^{-3}, y_{D}=\left(6.15_{-0.55}^{+0.56}\right) \times 10^{-3}$

Breakdowns

- Interesting to split the combination up into parts

B species

B+ decay modes only

Combination	Value	$68.3 \% \mathrm{CL}$	$95.4 \% \mathrm{CL}$
B^{+}	61.7	$[57.1,65.9]$	$[52.6,69.8]$
B^{0}	82.0	$[73.7,90.5]$	$[64.0,98.0]$
B_{s}^{0}	79.0	$[59.0,98.0]$	$[41.0,106.0]$

LHCb-CONF-2021-001

Breakdowns

- Highlights the complementarity of the beauty and charm samples

LHCb-CONF-2021-001

Evolution of γ results

- We've been measuring γ for a while now

- Last two results around 65 degrees
- Lower value mostly driven by
- Run $1+2 B^{-} \rightarrow D h^{-}, D \rightarrow K_{S}^{0} h^{+} h^{-}$ updated treatment of backgrounds
- Run $1+2 B^{-} \rightarrow D h^{-}, D \rightarrow K^{ \pm} \pi^{\mp}$ backgrounds and merging of degenerate solutions
- 5D compatibility to 2018 result ~ 2 sigma
- Excellent agreement with indirect global CKM fitters.

$$
\left.\gamma=\underset{\text { UT fit }}{(65.8 \pm 2.2)^{\circ}} \quad \gamma=\underset{\text { CKMfitter }}{(65.55} 5_{-2.95}^{+0.90}\right)^{\circ}
$$

$$
\gamma=\left(65.4_{-4.2}^{+3.8}\right)^{\circ}
$$

LHCb-CONF-2021-001

Precise measurement of Δm_{s}

- Oscillation frequency of B_{s}^{0} mesons

- Powerful constraint on the CKM matrix
- Reduce systematic uncertainties in CPV measurements
- Theory predictions available but less precise that experiment
E.g. Di Luzio, Kirk, Lenz et al. JHEP 12 (2019) 009
- Previous best result from LHCb
$\Delta m_{s}=17.757 \pm 0.007 \pm 0.008 \mathrm{ps}^{-1}$ JHEP 03 (2021) 137
- Already considerably more precise than the world average (HFLAV)

$$
\Delta m_{s}=17.741 \pm 0.020 \mathrm{ps}^{-1} \quad \text { Eur. Phys. J. C (2021) 81: } 226
$$

Time-dependent analysis of $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$decays

- Full Run 2 data sample, corresponding to $6 \mathrm{fb}^{-1}$ collected at 13 TeV
- Use both $D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}, \pi^{+} \pi^{-} \pi^{-}$final states
- Mass fit to separate signal and background
- Signal yield 378700 ± 700
- Fit to the decay time distribution
- Apply sWeights from the mass fit

$$
P(t) \sim e^{-\Gamma_{s} t}\left[\cosh \left(\frac{\Delta \Gamma_{s} t}{2}\right)+C \cdot \cos \left(\Delta m_{s} t\right)\right]
$$

- In reality more complicated, resolution and acceptances effects, flavour tagging etc.

arXiv:2104.04421 [hep-ex]

Time-dependent analysis of $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$decays

- Fit to the decay time distribution

- Effective flavour tagging power about 6.1\%
- Factor of two improvement over the previous LHCb result

$$
\Delta m_{s}=17.7683 \pm 0.0051 \pm 0.0032 \mathrm{ps}^{-1}
$$

- Additionally combine all LHCb results to get

$$
\Delta m_{s}=17.7656 \pm 0.0057 \mathrm{ps}^{-1}
$$

Summary

- First combination of LHCb beauty and charm observables
- Excellent precision on γ and a factor of two improvement for y_{D}
- Very precise new results for Δm_{s}
- Improved constraints in the CKM picture
- Still more to come from LHCb
- Run 1+2 measurements still coming through
- The upgrade detector has taken shape, looking forward to first data taking next year

Backups

Auxiliary inputs

Decay	Parameters	Source	Ref.	Status since Ref. [22]
$B^{ \pm} \rightarrow D K^{* \pm}$	$\kappa_{B}^{D K^{* \pm}}$	LHCb	$[28]$	As before
$B^{0} \rightarrow D K^{* 0}$	$\kappa_{B^{0}}^{D K^{* 0}}$	LHCb	$[31]$	As before
$B^{0} \rightarrow D^{\mp} \pi^{ \pm}$	β	HFLAV	$[15]$	Updated
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}(\pi \pi)$	ϕ_{s}	HFLAV	$[15]$	Updated
$D \rightarrow h^{+} h^{-} \pi^{0}$	$F_{\pi \pi \pi^{0}}^{+}, F_{K \pi \pi^{0}}^{+}$	CLEO-c	$[50]$	As before
$D \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	$F_{4 \pi}^{+}$	CLEO-c	$[50]$	As before
$D \rightarrow K^{+} \pi^{-} \pi^{0}$	$r_{D}^{K \pi \pi^{0}}, \delta_{D}^{K \pi \pi^{0}}, \kappa_{D}^{K \pi \pi^{0}}$	CLEO-c+LHCb+BESIII	$[46,51-53]$	Updated
$D \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_{D}^{K 3 \pi}, \delta_{D}^{K 3 \pi}, \kappa_{D}^{K 3 \pi}$	CLEO-c+LHCb+BESIII	$[46,51-53]$	Updated
$D \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$	$r_{D}^{K_{\mathrm{S}}^{0} K \pi}, \delta_{D}^{K_{\mathrm{S}}^{0} K \pi}, \kappa_{D}^{K}{ }_{\mathrm{S}}^{0} K \pi$	CLEO	$[54]$	As before
$D \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$	$r_{D}^{K_{\mathrm{S}}^{0} K \pi}$	LHCb	$[55]$	As before

Revisiting the Dh combination

- The full set of Dh inputs last used in the previous PAPER from 2016
- Subsequent CONFs have focused on the DK-like modes only
- Mostly due to poor constraints on the Dpi system giving multiple solutions, and favouring one we knew to be incorrect - giving an unrealistically precise one sigma result for γ
- However, now have some big new results
- New approach in the BPGGSZ analysis measures CPV in Dpi decays as well
- Input on $r_{B}^{D \pi}$ particularly valuable
- High statistics from the two body analysis also provides some better stability

Input from $B^{0} \rightarrow D^{-} \pi^{+}$decays

- Can measure γ using a time-dependent analysis of this mode

- However, there are two observables to measure, and three unknowns
- So previously took $r_{B}^{D^{-} \pi^{+}}$as an input in order to measure γ
- This input is the only one in the entire combination with a theory assumption - $\mathrm{SU}(3)$

- The plan

- Keep the experimental results in
- Remove the external input for $r_{B}^{D^{-} \pi^{+}}$
- Measure $r_{B}^{D^{-} \pi^{+}}$in the combination instead

Results - comment on $B^{0} \rightarrow D^{-} \pi^{+}$decays

- Comparison with and without the old external input

- Value of γ completely unaffected by the treatment of $r_{B}^{D^{-} \pi}$
- Combination measures it to be

$$
r_{B}^{D^{-} \pi^{+}}=0.029 \pm 0.013
$$

- Consistent with the previous input value of

$$
r_{B}^{D^{-} \pi^{+}}(\text {ext. })=0.0182 \pm 0.0038
$$

- Shows the validity of the $\mathrm{SU}(3)$ assumptions in this prediction (with uncertainties at least)

Numerical results

Preliminary	Quantity	Value	68.3\% CL		95.4\% CL	
			Uncertainty	Interval	Uncertainty	Interval
	$\gamma\left[{ }^{\circ}\right]$	65.4	${ }_{-4.2}^{+3.8}$	[61.2, 69.2]	${ }_{-8.7}^{+7.5}$	[56.7, 72.9]
	$r_{B^{ \pm}}^{D K^{ \pm}}$	0.0984	${ }_{-0.0026}^{+0.0027}$	[0.0958, 0.1011]	$\begin{gathered} -0.1 \\ { }_{-0.0056}^{+0.0056} \end{gathered}$	[0.0932, 0.1040]
	$\delta_{B^{ \pm}}^{D K^{ \pm}}\left[{ }^{\circ}\right]$	127.6	${ }_{-4.0}^{+4.0}$	[123.4, 131.6]	+7.8 -9.2	[118.4, 135.4]
	$r_{B^{ \pm}}^{D \pi^{ \pm}}$	0.00480	$\begin{aligned} & +0.00070 \\ & { }_{-0.00056} \end{aligned}$	[0.00424, 0.00550]	${ }_{-0.0011}^{+0.0017}$	[0.0037, 0.0065]
	$\left.\delta_{B^{ \pm}}^{D \pi^{ \pm}}{ }^{\circ}\right]$	288	$\begin{aligned} & +14 \\ & { }_{-15} \end{aligned}$	[273, 302]	${ }_{-31}^{+26}$	[257, 314]
	$r_{B^{ \pm} K^{ \pm}}^{D^{*}}$	0.099	${ }_{-0.019}^{+0.016}$	[0.080, 0.115]	${ }_{-0.038}^{+0.030}$	[0.061, 0.129]
	$\left.\delta_{B^{ \pm} K^{ \pm}}^{D^{*}}{ }^{\circ}\right]$	310	${ }_{-23}^{+12}$	[287, 322]	${ }_{-71}^{+20}$	[239, 330]
	$r_{B^{ \pm} \pi^{ \pm}}^{D^{*}}$	0.0095	$\begin{aligned} & { }_{-0.0061}^{+0.0085} \end{aligned}$	[0.0034, 0.0180]	${ }_{-0.0089}^{+0.017}$	[0.0006, 0.026]
	$\left.\delta_{B^{ \pm} \pi^{ \pm}}^{D^{*}}{ }^{\circ}\right]$	139	${ }_{-86}^{+22}$	[53, 161]	$\begin{aligned} & { }_{-129}^{+32} \end{aligned}$	[10, 171]
	$r_{B^{ \pm}}^{D K^{* \pm}}$	0.106	${ }_{-0.019}^{+0.017}$	[0.087, 0.123]	$\begin{array}{r} +10.031 \\ { }_{-0.040}^{+0.051} \end{array}$	[0.066, 0.137]
	$\delta_{B^{ \pm}}^{D K^{* \pm}}\left[{ }^{\circ}\right]$	35	$\begin{aligned} & { }_{-15}^{+20} \end{aligned}$	[20, 55]	$\begin{aligned} & +57 \\ & { }_{-28}^{+57} \end{aligned}$	[7, 92]
	$r_{B^{0}}^{D K^{* 0}}$	0.250	${ }_{-0.024}^{+0.023}$	[0.226, 0.273]	${ }_{-0.052}^{+0.044}$	[0.198, 0.294]
	$\delta_{B^{0}}^{D K^{* 0}}\left[{ }^{\circ}\right]$	197	$\begin{aligned} & { }_{-9.3}^{+10} \end{aligned}$	[187.7, 207]	${ }_{-18}^{+24}$	[179, 221]

Numerical results

Breakdowns

- Interesting to split the combination up into parts

Breakdowns

- Interesting to split the combination up into parts

B0 modes

Flavour tagging at LHCb

Today

Pre HL-LHC

After HL-LHC

