Measurements of the CKM angle γ (and friends) at LHCb

Mark Whitehead on behalf of the LHCb collaboration

Science and Technology Facilities Council

ЦĶ

EPS-HEP Conference, Virtual, July 26-30, 2021

Introduction

- Why are we (still) measuring γ ?
 - Standard candle measurement of the SM
 - Tree-level decays, theoretically simple
 - We really measure γ not $\gamma \pm \Delta_{SM}$
 - Negligible SM uncertainties $\sim (10^{-7})^{o}$
 - Still room for some NP though
- Indirect measurements from CKM fits $\gamma = (65.8 \pm 2.2)^{\circ}, \gamma = (65.55^{+0.90}_{-2.65})^{\circ}$
 - Previous measurement from LHCb

$$\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$$
 LHCb-CONF-2018-002

Measuring γ

- Interference effects
 - Two amplitudes giving the same final state: $b \to cW(V_{cb})$ and $b \to uW(V_{ub})$
 - Golden mode $B^{\pm} \rightarrow DK^{\pm}$

LHCb γ (+ charm?) combination

- Historically taken HFLAV global charm fit as an input $(x_D, y_D, r_D, \delta_D)$
 - External constraints for two body D decay modes and mixing corrections across the board
 - $B^- \to Dh^-, D \to K^{\pm}\pi^{\mp}$ decays have good sensitivity to $\delta_D^{K\pi}$ (if γ, δ_B are well measured)
- Why not just measure $\delta_D^{K\pi}$?
 - Measuring just $\delta_D^{K\pi}$ requires inputs for x_D, y_D, r_D
 - These in turn depend on the strong phase
 - So, the most robust option is to use LHCb charm + beauty data to constrain all four parameters
 - This combined input can be used by HFLAV etc

LHCb γ (+ charm?) combination

- Historically taken HFLAV global charm fit as an input $(x_D, y_D, r_D, \delta_D)$
 - External constraints for two body D decay modes and mixing corrections across the board
 - $B^- \to Dh^-, D \to K^{\pm}\pi^{\mp}$ decays have good sensitivity to $\delta_D^{K\pi}$ (if γ, δ_B are well measured)
- Strong correlation between y_D and $\delta_D^{K\pi}$
 - Originates from the fact one typically measures $y_D \cos \delta_D^{K\pi}$
 - Allows for a large corresponding improvement in the measurement of y_{D}

$$y_D \equiv \frac{\Delta\Gamma}{2\Gamma}$$

LHCb γ and charm combination

- Large update since the previous paper
 - LHCb γ and charm combination
 - Many new and updated inputs
- Follow a frequentist procedure
 - Described in details in the previous paper JHEP 12 (2016) 087
 - Combine 151 observables
 - Determine 52 parameters

B decay	D decay	Ref.	Dataset	Status since
				Ref. [22]
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	[24]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[25]	Run 1	As before
$B^\pm \to D h^\pm$	$D \to h^+ h^- \pi^0$	[26]	Run 1	As before
$B^\pm \to D h^\pm$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[23]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[27]	Run 1&2	Updated
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to h^+ h^-$	[24]	Run $1\&2(*)$	Updated
$B^\pm \to D K^{*\pm}$	$D \to h^+ h^-$	[28]	Run $1\&2(*)$	As before
$B^\pm \to D K^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[28]	Run $1\&2(*)$	As before
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D \to h^+ h^-$	[29]	Run 1	As before
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	[30]	Run $1\&2(*)$	Updated
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[30]	Run $1\&2(*)$	New
$B^0 \to D K^+ \pi^-$	$D \to h^+ h^-$	[31]	Run 1	Superseded
$B^0 \to DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[32]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[33]	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$	[34]	Run 1	As before
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[35]	Run 1&2	New
_	$D ightarrow h^+ h^-$	[36-38]	Run 1&2	New
_	$D ightarrow h^+ h^-$	[39]	Run 1	New
_	$D \to h^+ h^-$	[40-43]	Run 1&2	New
_	$D \to K^+ \pi^-$	[44]	Run 1	New
_	$D \to K^+ \pi^-$	[45]	Run $1\&2(*)$	New
_	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[46]	Run 1	New
_	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[47, 48]	Run 1&2	New
_	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[49]	Run 1	New

LHCb-CONF-2021-001

LHCb γ and charm combination

- Large update since the previous paper
 - LHCb γ and charm combination
 - Many new and updated inputs
- Follow a frequentist procedure
 - Described in details in the previous paper JHEP 12 (2016) 087
 - Combine 151 observables
 - Determine 52 parameters

B decay	D decay Ref.		Dataset	Status since
				Ref. [22]
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	[24]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[25]	Run 1	As before
$B^\pm \to D h^\pm$	$D \to h^+ h^- \pi^0$	[26]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[23]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[27]	Run 1&2	Updated
$B^\pm \to D^* h^\pm$	$D \to h^+ h^-$	[24]	Run $1\&2(*)$	Updated
$B^\pm \to D K^{*\pm}$	$D ightarrow h^+ h^-$	[28]	Run $1\&2(*)$	As before
$B^\pm \to D K^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[28]	Run $1\&2(*)$	As before
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^+ h^-$	[29]	Run 1	As before
$B^0 \to D K^{*0}$	$D \to K^+ \pi^-$	[30]	Run $1\&2(*)$	Updated
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[30]	Run $1\&2(*)$	New
$B^0 \to D K^+ \pi^-$	$D \to h^+ h^-$	[31]	Run 1	Superseded
$B^0 \to DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[32]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[33]	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[34]	Run 1	As before
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[35]	Run 1&2	New
_	$D ightarrow h^+ h^-$	[36-38]	Run 1&2	New
_	$D \to h^+ h^-$	[39]	Run 1	New
_	$D ightarrow h^+ h^-$	[40-43]	Run 1&2	New
_	$D \to K^+ \pi^-$	[44]	Run 1	New
_	$D \to K^+ \pi^-$	[45]	Run $1\&2(*)$	New
_	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[46]	Run 1	New
_	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[47, 48]	Run 1&2	New
_	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[49]	Run 1	New

• First simultaneous fit for charm and beauty parameters

Headline results

Observables: 151 Parameters: 52 Fit probability: 67%

LHCb-CONF-2021-001

World average (HFLAV) $x_D = (4.09^{+0.48}_{-0.49}) \times 10^{-3}, y_D = (6.15^{+0.56}_{-0.55}) \times 10^{-3}$

26/07/2021

Breakdowns

• Interesting to split the combination up into parts

Breakdowns

• Highlights the complementarity of the beauty and charm samples

Evolution of

0

40

- We've been measuring γ for a while now
 - Last two results around 65 degrees
 - Lower value mostly driven by
 - Run 1+2 $B^- \rightarrow Dh^-, D \rightarrow K_S^0 h^+ h^$ updated treatment of backgrounds
 - Run 1+2 $B^- \rightarrow Dh^-, D \rightarrow K^{\pm}\pi^{\mp}$ backgrounds and merging of degenerate solutions
 - 5D compatibility to 2018 result ~2 sigma
 - Excellent agreement with indirect global CKM fitters.

$$\gamma = (65.8 \pm 2.2)^{\circ}$$
 $\gamma = (65.55^{+0.90}_{-2.65})^{\circ}$

UT fit

CKMfitter

60

50

70

80

90

LHCb-CONF-2021-001

Precise measurement of Δm_s

- Oscillation frequency of B_s^0 mesons
 - Powerful constraint on the CKM matrix
 - Reduce systematic uncertainties in CPV measurements
 - Theory predictions available but less precise that experiment

E.g. Di Luzio, Kirk, Lenz et al. JHEP 12 (2019) 009

• Previous best result from LHCb

 $\Delta m_s = 17.757 \pm 0.007 \pm 0.008 \text{ ps}^{-1}$ JHEP 03 (2021) 137

• Already considerably more precise than the world average (HFLAV)

 $\Delta m_s = 17.741 \pm 0.020 \text{ ps}^{-1}$ Eur. Phys. J. C (2021) 81: 226

Time-dependent analysis of $B_s^0 \rightarrow D_s^2 \pi^2/decays$

- Full Run 2 data sample, corresponding to 6 fb^{-1} collected at 13 TeV
 - Use both $D_s^- \to K^+ K^- \pi^-, \pi^+ \pi^- \pi^-$ final states
 - Mass fit to separate signal and background
 - Signal yield 378700 ± 700
- Fit to the decay time distribution
 - Apply sWeights from the mass fit

$$P(t) \sim e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + C \cdot \cos(\Delta m_s t) \right]$$

• In reality more complicated, resolution and acceptances effects, flavour tagging etc.

26/07/2021

Time-dependent analysis of $B_s^0 \rightarrow D_s^- \pi^+$ decays

- Fit to the decay time distribution
 - Effective flavour tagging power about 6.1%
 - Factor of two improvement over the previous LHCb result

 $\Delta m_s = 17.7683 \pm 0.0051 \pm 0.0032 \text{ ps}^{-1}$

• Additionally combine all LHCb results to get

LHCb6 fb⁻¹

- $B^0_s \to D^-_s \pi^+$ - $\overline{B}^0_s \to D^-_s \pi^+$ - Untagged

 $\overline{\mathrm{Ds}}$

(0.04)

Decays

2000

1000

Summary

- First combination of LHCb beauty and charm observables
 - Excellent precision on γ and a factor of two improvement for y_D
- Very precise new results for $\Delta m_{_S}$
 - Improved constraints in the CKM picture
- Still more to come from LHCb
 - Run 1+2 measurements still coming through
 - The upgrade detector has taken shape, looking forward to first data taking next year

Auxiliary inputs

Decay	Parameters	Source	Ref.	Status since
				Ref. [22]
$B^{\pm} \to DK^{*\pm}$	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[28]	As before
$B^0 \to D K^{*0}$	$\kappa^{DK^{st 0}}_{B^0}$	LHCb	[31]	As before
$B^0 \to D^{\mp} \pi^{\pm}$	eta	HFLAV	[15]	Updated
$B^0_s \to D^{\mp}_s K^{\pm}(\pi\pi)$	ϕ_s	HFLAV	[15]	Updated
$D \to h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0}, \ F^+_{K\pi\pi^0}$	CLEO-c	[50]	As before
$D \to \pi^+ \pi^- \pi^+ \pi^-$	$F_{4\pi}^+$	CLEO-c	[50]	As before
$D \to K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0},\delta_D^{K\pi\pi^0},\kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[46, 51 - 53]	Updated
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi},\delta_D^{K3\pi},\kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[46, 51–53]	Updated
$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	$r_D^{K_{ m S}^0K\pi},\delta_D^{K_{ m S}^0K\pi},\kappa_D^{K_{ m S}^0K\pi}$	CLEO	[54]	As before
$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	$r_D^{K^0_{ m S}K\pi}$	LHCb	[55]	As before

Revisiting the Dh combination

- The full set of Dh inputs last used in the previous PAPER from 2016
 - Subsequent CONFs have focused on the DK-like modes only
 - Mostly due to poor constraints on the Dpi system giving multiple solutions, and favouring one we knew to be incorrect giving an unrealistically precise one sigma result for γ
- However, now have some big new results
 - New approach in the BPGGSZ analysis measures CPV in Dpi decays as well
 - Input on $r_B^{D\pi}$ particularly valuable
 - High statistics from the two body analysis also provides some better stability

Input from $B^0 \rightarrow D^- \pi^+$ decays

- Can measure γ using a time-dependent analysis of this mode
 - However, there are two observables to measure, and three unknowns
 - So previously took $r_B^{D^-\pi^+}$ as an input in order to measure γ
 - This input is the **only** one in the entire combination with a theory assumption SU(3)
- The plan
 - Keep the experimental results in
 - Remove the external input for $r_B^{D^-\pi^+}$
 - Measure $r_B^{D^-\pi^+}$ in the combination instead

Results - comment on $B^0 \rightarrow D^- \pi^+$ decays

• Comparison with and without the old external input

Numerical results

reliminary	Quantity	Value	68.3% CL		95.4% CL		
	Quantity	varue	Uncertainty	Interval	Uncertainty	Interval	
	γ [°]	65.4	$+3.8 \\ -4.2$	[61.2, 69.2]	$+7.5 \\ -8.7$	[56.7, 72.9]	
	$r_{B^{\pm}}^{DK^{\pm}}$	0.0984	$+0.0027 \\ -0.0026$	[0.0958, 0.1011]	$+0.0056 \\ -0.0052$	[0.0932, 0.1040]	
	$\delta_{B^{\pm}}^{DK^{\pm}} \left[^{\circ}\right]$	127.6	$^{+4.0}_{-4.2}$	[123.4, 131.6]	$+7.8 \\ -9.2$	[118.4, 135.4]	
	$r_{B^{\pm}}^{D\pi^{\pm}}$	0.00480	$+0.00070 \\ -0.00056$	[0.00424, 0.00550]	$+0.0017 \\ -0.0011$	$\left[0.0037, 0.0065 ight]$	
	$\delta^{D\pi^{\pm}}_{B^{\pm}}$ [°]	288	$^{+14}_{-15}$	[273, 302]	$^{+26}_{-31}$	[257, 314]	
	$r_{B^{\pm}}^{D^{*}K^{\pm}}$	0.099	$^{+0.016}_{-0.019}$	[0.080, 0.115]	$+0.030 \\ -0.038$	[0.061, 0.129]	
	$\delta_{B^{\pm}}^{D^{*}K^{\pm}} \left[^{\circ}\right]$	310	$^{+12}_{-23}$	[287, 322]	$^{+20}_{-71}$	[239, 330]	
	$r_{B^{\pm}}^{D^{*}\pi^{\pm}}$	0.0095	$+0.0085 \\ -0.0061$	[0.0034, 0.0180]	$^{+0.017}_{-0.0089}$	[0.0006, 0.026]	
	$\delta_{B^{\pm}}^{D^{*}\pi^{\pm}} \left[^{\circ}\right]$	139	$^{+22}_{-86}$	[53, 161]	$+32 \\ -129$	[10, 171]	
	$r_{B^{\pm}}^{DK^{*\pm}}$	0.106	$^{+0.017}_{-0.019}$	[0.087, 0.123]	$+0.031 \\ -0.040$	[0.066, 0.137]	
	$\delta_{B^{\pm}}^{DK^{*\pm}} \left[^{\circ}\right]$	35	$^{+20}_{-15}$	[20, 55]	$+57 \\ -28$	[7, 92]	
	$r_{B^0}^{DK^{*0}}$	0.250	$+0.023 \\ -0.024$	[0.226, 0.273]	$+0.044 \\ -0.052$	[0.198, 0.294]	
	$\delta_{B^0}^{DK^{*0}} \left[^\circ\right]$	197	$^{+10}_{-9.3}$	[187.7, 207]	$+24 \\ -18$	[179, 221]	

LHCb-CONF-2021-001

Numerical results

Preliminary	$r^{D_s^\mp K^\pm}_{B^0_{ m c}}$	0.310	$+0.098 \\ -0.092$	[0.218, 0.408]	$+0.20 \\ -0.21$	$\left[0.10, 0.51\right]$
	$\delta_{B_{\circ}^{\circ}}^{D_{s}^{\mp}K^{\pm}}$ [°]	356	$^{+19}_{-18}$	[338, 375]	$+39 \\ -39$	[317, 395]
	$r_{B_{\circ}^{\circ}}^{\check{\sigma}^{\mp}K^{\pm}\pi^{+}\pi^{-}}$	0.460	$+0.081 \\ -0.084$	[0.376, 0.541]	$^{+0.16}_{-0.17}$	$\left[0.29, 0.62\right]$
	$\delta_{B_{\circ}^{\circ}}^{D_{s}^{\mp}K^{\pm}\pi^{+}\pi^{-}}\left[^{\circ}\right]$	345	$^{+13}_{-12}$	[333, 358]	$^{+26}_{-25}$	[320, 371]
	$r_{B^0}^{\check{\sigma}^{\mp}\pi^{\pm}}$	0.030	$+0.014 \\ -0.012$	[0.018, 0.044]	$+0.036 \\ -0.028$	[0.002, 0.066]
	$\delta_{B^0}^{D^\mp\pi^\pm} \left[^\circ \right]$	30	$^{+26}_{-37}$	[-7, 56]	$+45 \\ -81$	[-51, 75]
	$r_{B^{\pm}}^{DK^{\pm}\pi^{+}\pi^{-}}$	0.079	$+0.028 \\ -0.034$	[0.045, 0.107]	$+0.050 \\ -0.079$	$[0.000, 0.129]^*$
	$r_{B^{\pm}}^{D\pi^{\pm}\pi^{+}\pi^{-}}$	0.067	$+0.025 \\ -0.029$	[0.038, 0.092]	$+0.040 \\ -0.067$	$[0.000, 0.107]^*$
	x[%]	0.400	$+0.052 \\ -0.053$	[0.347, 0.452]	$^{+0.10}_{-0.11}$	[0.29, 0.50]
	$y\left[\% ight]$	0.630	$+0.033 \\ -0.030$	[0.600, 0.663]	$+0.069 \\ -0.058$	[0.572, 0.699]
	$r_D^{K\pi}$	0.05867	$+0.00015 \\ -0.00015$	$\left[0.05852, 0.05882 ight]$	$+0.00031 \\ -0.00030$	[0.05837, 0.05898]
	$\delta_D^{K\pi} \left[^\circ ight]$	190.0	$+4.2 \\ -4.1$	[185.9, 194.2]	$+8.6 \\ -8.3$	[181.7, 198.6]
	q/p	0.997	$+0.016 \\ -0.016$	[0.981, 1.013]	$+0.033 \\ -0.033$	[0.964, 1.030]
	$\phi \left[^{\circ} ight]$	-2.4	± 1.2	[-3.6, -1.2]	± 2.5	[-4.9, 0.1]

LHCb-CONF-2021-001

26/07/2021

LHCb-CONF-2021-001

Flavour tagging at LHCb

Today

γ

21/1

0.7

95

CKM

γ

21/1

0.7

95

CKNA

21/11/2018

CERN-LHCC-2018-027