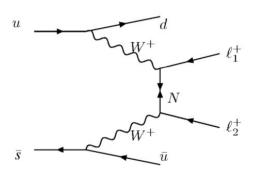


Searches for lepton flavour and lepton number violation in K^+ and π^0 decays

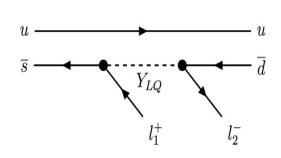
Elisa Minucci

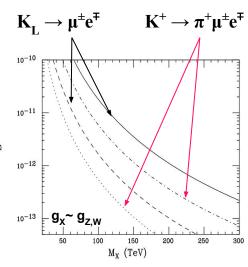
on behalf of the NA62 Collaboration


Outline:

- Introduction
- The NA62 experiment
- Search for $K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+$ and $\pi^0 \rightarrow \mu^{-} e^+$ decays
- Summary

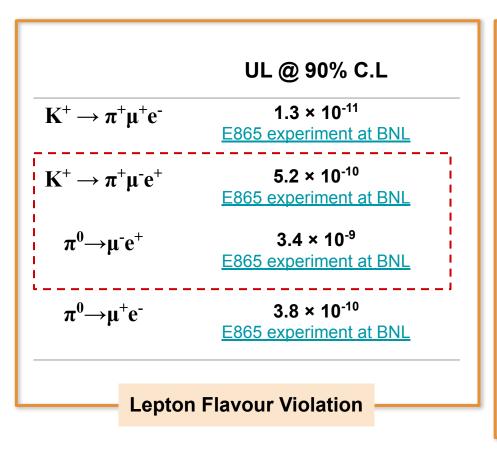
Lepton Number & Lepton Flavour violation in K⁺ **decay**


Lepton Number (L) and Lepton Flavour($\mathbf{L}_{\mathbf{e}}$, \mathbf{L}_{μ} , \mathbf{L}_{τ}) are approximately conserved numbers within the SM: their conservation is not imposed by any local gauge symmetry \rightarrow interesting to search for New Physics effects, exploring high mass scale $\mathcal{O}(100 \text{ TeV})$.


Lepton Number Violation

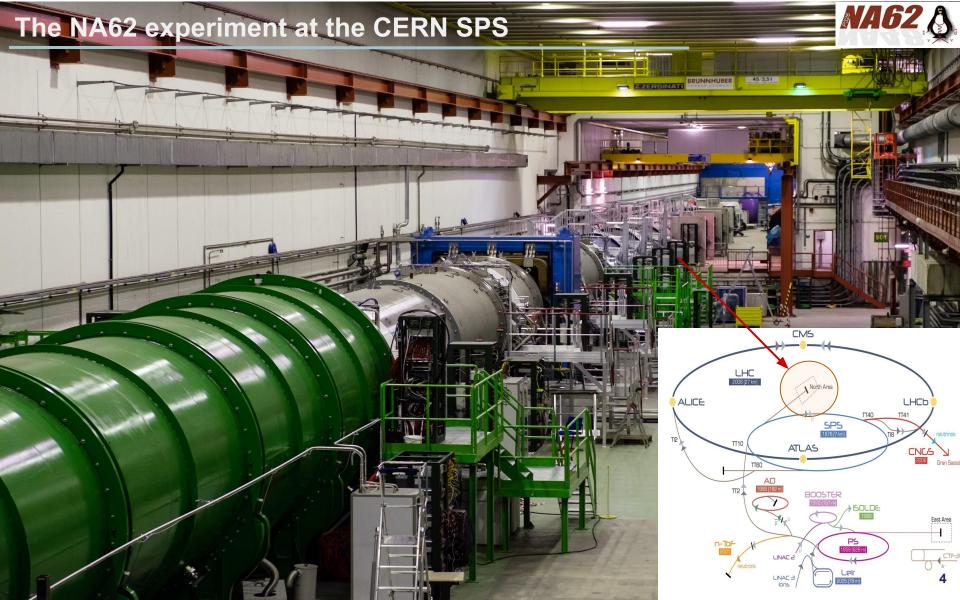
E.g: <u>Type I see-saw mechanism</u> $\Delta L = 2 \text{ via exchange of Majorana}$ neutrinos
Indirect upper limit of few × 10⁻¹¹ for $K^+ \rightarrow \pi^- \mu^+ e^+$

Lepton Flavour Violation

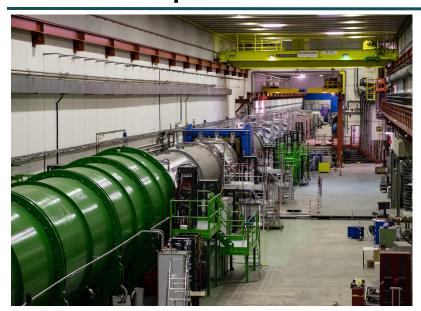


$$\Delta L_i = 1 \& \Delta L_i = 1 \text{ i,j} = [\mu,e]$$

E.g mediated at three level by <u>leptoquark</u> that can couples with fermions of more than one families or by a <u>new heavy Z' boson</u> with family non-universal coupling


Searches in K decays are complementary to searches in B-physics and in pure leptonic processes as: $\mu \to 3e$

LNV & LFV in K^+ and π^0 decay: State of the art


UL @ 90% C.L 4.2×10^{-11} $K^+ \rightarrow \pi^- \mu^+ \mu^+$ NA62 experiment at CERN 2.2×10^{-10} $K^+ \rightarrow \pi^- e^+ e^+$ NA62 experiment at CERN 5.0×10^{-10} $K^+ \rightarrow \pi^- \mu^+ e^+$ E865 experiment at BNL $K^+ \rightarrow e^- \nu \mu^+ \mu^+$ no limits 2.1×10^{-8} $K^+ \rightarrow \mu \bar{\nu} e^+ e^+$ Geneva-Saclay experiment

Lepton Number Violation

The NA62 experiment at the CERN SPS

- Data taking: 2016-2018
- Fixed target experiment
 (400 GeV/c proton from SPS onto a Beryllium target)
- Unseparated secondary beam
- Kaon decay-in-flight technique
 MHz K⁺decay rate within the fiducial volume

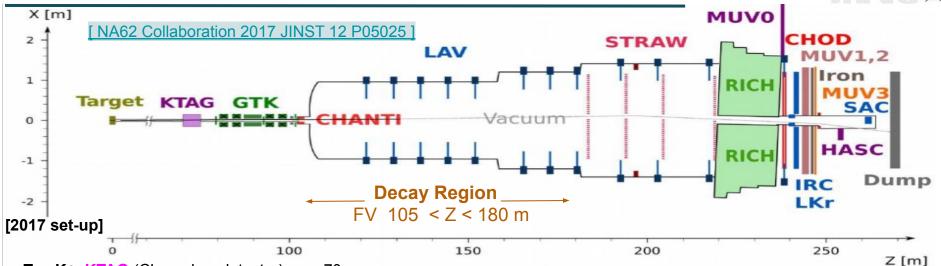
Main goal:

Measure $Br(K^+ o\pi^+
uar
u)$ with O(10%) precision

SM prediction:

$$Br(K^+ o\pi^+
uar{
u})=(8.4\pm1.0) imes10^{-11}$$

[Buras et al. JHEP 1511(2015)33]


Latest results → Talk by A.Romano

Broad physics program

- Rare and forbidden decays : LN and LF violation
- Precision measurements of SM decays.
 <u>Talk by F. Brizioli</u>
- Exotics searches: dark photon, heavy neutral leptons, axion-like particles → <u>Talk by C.Parkinson</u>

The NA62 experiment & the $K^+ \rightarrow \pi^{\pm} l^{\pm} l^{'\mp}$

Tag K+: **KTAG** (Cherenkov detector), $\sigma_t \sim 70 \text{ ps}$

Reconstruct momentum and direction of 3 charged tracks: STRAW

- Total momentum consistent with the K⁺ beam momentum
- Reconstruct vertex in FV

PID:

- LKr: E/P → E= energy deposited in calorimeter; P= reconstructed momentum
- MUV3: ID/veto muons

Photon vetos: hermetic (0-50) mrad: 12LAVs, 2SAVs (IRC+SAC), LKr

Track Timing: CHOD $\sigma_{t} \sim 200 \text{ ps}$

Trigger: L0 (hardware max 1MHz) + L1 (software max 10 kHz).

Rare+Exotics triggers taken simultaneously with $K^{\scriptscriptstyle +}\!\to\pi^{\scriptscriptstyle +}\!\nu\nu$ trigger

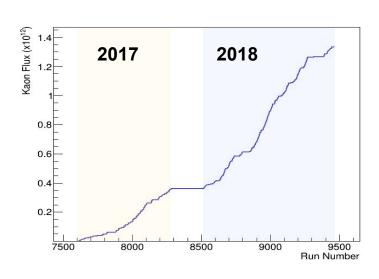
Search for $K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+$ and $\pi^{\theta} \rightarrow \mu^{-} e^+$ decays at NA62

- □ Blinded analysis strategy
- **2017+2018 data:** Data analyzed = Logic OR of three trigger chains
- The invariant mass of the three selected tracks built under the $\pi^-\mu^-e$ hypothesis $\mathbf{M}_{\pi\mu e}$ ($\sigma_{\mathbf{M}}^{\sim}$ 1.4 MeV), is the kinematic variable used to distinguish between signal and background
- \blacksquare $K^+ \to \pi^+ \pi^0$, $\pi^0 \to \mu^- e^+$ additional constraint on the mass of the two leptons: $\mathbf{M}_{\mu e}$ compatible with π^0 mass

Trigger chain			Description			
Multi-Track $D_{MT} = 100 (K^+ \rightarrow \pi^+ \pi^+ \pi^- + Signal)$			Min.bias 3-track trigger			
Multi-Track μ D _{μ-MT} = 8 (Signal)			3 tracks + E _{LKr} > 10 GeV + ≥ 1μ (MUV3)			
Multi Track eD _{e-MT} = 8 (Signal)			3 tracks + E _{LKr} > 20 GeV			$K^+ \rightarrow \pi \mu e (MC)$ $K^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow \mu^- e^+ (MC)$
	$K^+ \rightarrow \pi^- \mu^+ e^+$	$K^+ \rightarrow \pi^+ \mu^- e^+$	$\pi^0 \rightarrow \mu^- e^+$	ja Pad ba	0.04	
ε _{LKr10} × 10 ²	97.5 ± 1.3	97.5 ± 1.3	92.9 ± 1.2	2009	Fraction of energy deposited per 0.50.00	
ε _{LKr20} × 10 ²	74.1 ± 1.6	73.3 ± 1.6	45.3 ± 1.0	o de la companya de l	5 0.02	
ε _{MT} × 10 ²		93.5 ± 0.5	,	P series	0.01 10 Er	20 30 40 50 60 nergy deposit in the LKr calorimeter from three tracks [GeV]

Single Event Sensitivity

Signals are normalized to the $\mathbf{K}^+ \to \pi^+ \pi^+ \pi^-$ channel: $\mathcal{B}(\mathbf{K}3\pi) = (5.583 \pm 0.024)\%$ \to cancellation of systematic effects: trigger efficiency, intrinsic detector inefficiencies


$$N_K = rac{N_{K3\pi}}{Br_{K3\pi} \cdot A_n \cdot \epsilon_n} rac{D_{MT}}{D_{eff}}$$

 $N_{\scriptscriptstyle K}$ \to kaon decays in the FV. Account for the downscaling factor of the three triggers ($D_{\it eff}$)

$$N_K = (1.33 \pm 0.02) imes 10^{12}$$

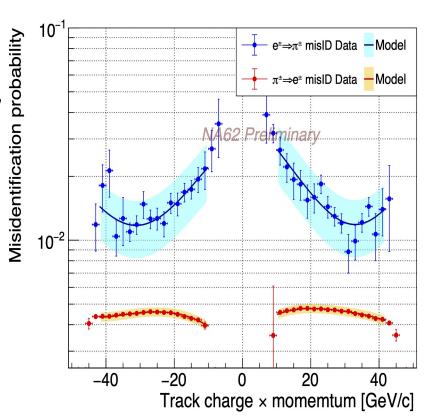
$$\mathcal{B}_{S.E.S} = rac{1}{N_K \cdot A_s \cdot arepsilon_{trig}}$$

Account for signal trigger efficiency For $\pi^0 \to \mu^- e^+ \, \mathcal{B}_{SES}$ divided by $\mathcal{B}(K^+ \!\!\! \to \!\!\! \pi^+ \pi^0) = (20.67 \pm 0.08)\%$

$$egin{aligned} A_s(K^+ o \pi^- \mu^+ e^+) &= (4.90 \pm 0.02)\% &\Longrightarrow & \mathcal{B}_{S.E.S} = (1.82 \pm 0.08) imes 10^{-11} \ A_s(K^+ o \pi^+ \mu^- e^+) &= (6.21 \pm 0.02)\% &\Longrightarrow & \mathcal{B}_{S.E.S} = (1.44 \pm 0.04) imes 10^{-11} \ A_s(K^+ o \pi^+ \pi^0, \pi^0 o \mu^+ e^+) &= (3.11 \pm 0.02)\% &\Longrightarrow & \mathcal{B}_{S.E.S} = (1.38 \pm 0.09) imes 10^{-10} \end{aligned}$$

Background mechanism

1. Mis-identification (mis-ID)

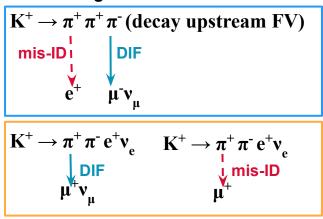

Mis-ID probability measured from data

- $\pi^{\pm} \Rightarrow e^{\pm}$ from pure sample of $K^{+} \rightarrow \pi^{+} \pi^{-} \pi^{-}$
- $e^{\pm} \Rightarrow \pi^{\pm}$ from pure sample of $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^- \gamma$

Model applied to simulation \rightarrow boosts statistical power $\pi^{\pm} \Rightarrow \mu^{\pm}$ and $\mu^{\pm} \Rightarrow e^{\pm}$ have been considered (MUV3 accidentals)

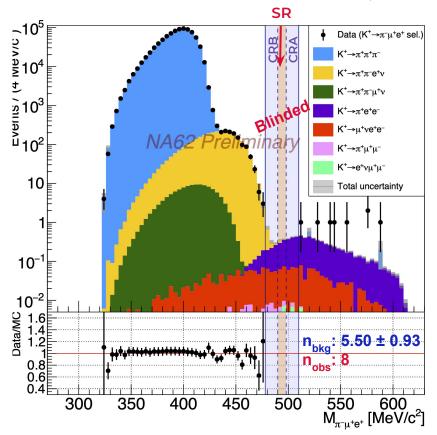
2. Decay-in-flight

 $\pi^\pm o \mu^\pm v_\mu^{}$ or $\mu^\pm o e^\pm v_e^{}$ Dalitz decay : $\pi^0 o e^+ e^- \gamma$

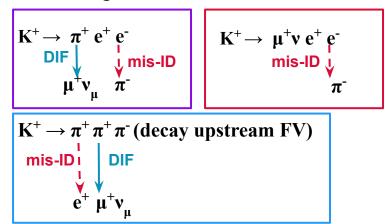

$K^+ \rightarrow \pi^+ \mu^- e^+$ Analysis

$$A_s(K^+ o\pi^+\mu^-e^+) = (6.21\pm0.02)\% \implies S.\,E.\,S = (1.44\pm0.05) imes 10^{-11}$$

Main background contributions:

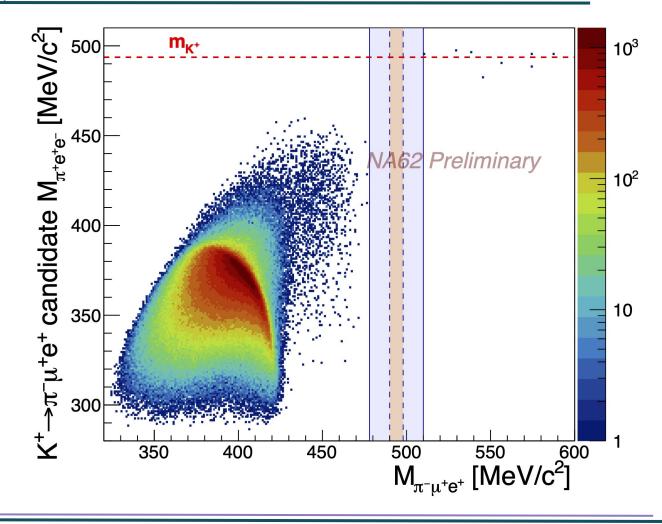

	N _{CRB}	N _{CRA}	
Total bkg expected	3.41 ± 0.54	1.27 ± 0.40	
Observed events	2	0	
p-value	0.99		

$K^+ \rightarrow \pi^- \mu^+ e^+$ Analysis



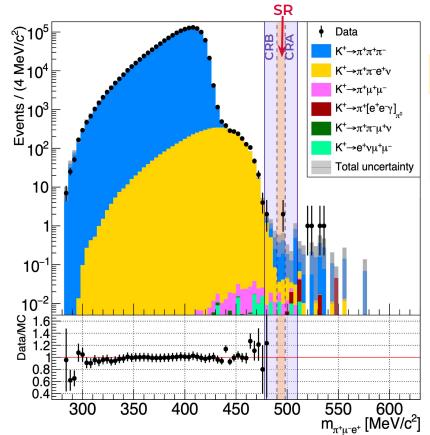
$$A_s(K^+ o\pi^-\mu^+e^+) = (4.90\pm0.02)\% \implies S.\,E.\,S = (1.82\pm0.08) imes 10^{-11}$$

[dedicated cut to reject K^+ decays with $\pi^0 \rightarrow e^+e^-\gamma$ DIF]


Main background contributions:

	N _{CRB}	N _{CRA}	
Total bkg expected	1.68 ± 0.20	1.66 ± 0.26	
Observed events	2	4	
p-value	0.18		

$K^+ \rightarrow \pi^- \mu^+ e^+$ Analysis: $K^+ \rightarrow \pi^+ e^+ e^-$ background



$K^+ \rightarrow \pi^+ \mu^- e^+$ Analysis: Signal Region opened

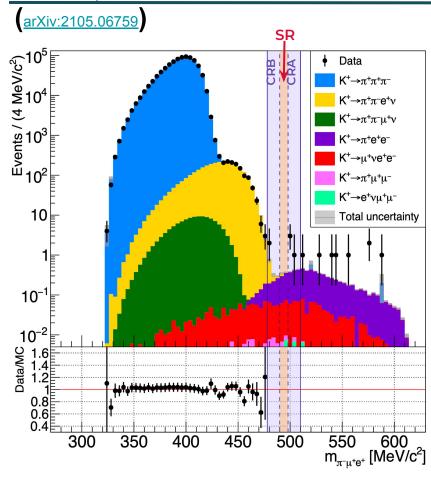
<u>arXiv:2105.06759</u>

In signal region

$$n_{bkg} = 0.92 \pm 0.34, \;\; n_{obs} = 2$$

$$Br(K^+ o\pi^+\mu^-e^+) < 6.6 imes 10^{-11} \,\,@\,\,90\%\,\,C.\,L$$

For $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \mu^- e^+$


$$n_{bkq} = 0.23 \pm 0.15, \;\; n_{obs} = 0$$

$$Br(\pi^0 o \mu^- e^+) < 3.2 imes 10^{-10} \, @ \, 90\% \, \, C. \, L$$

[Counting experiment, CLs treatment]

$K^+ \rightarrow \pi^- \mu^+ e^+$ Analysis: Signal Region opened

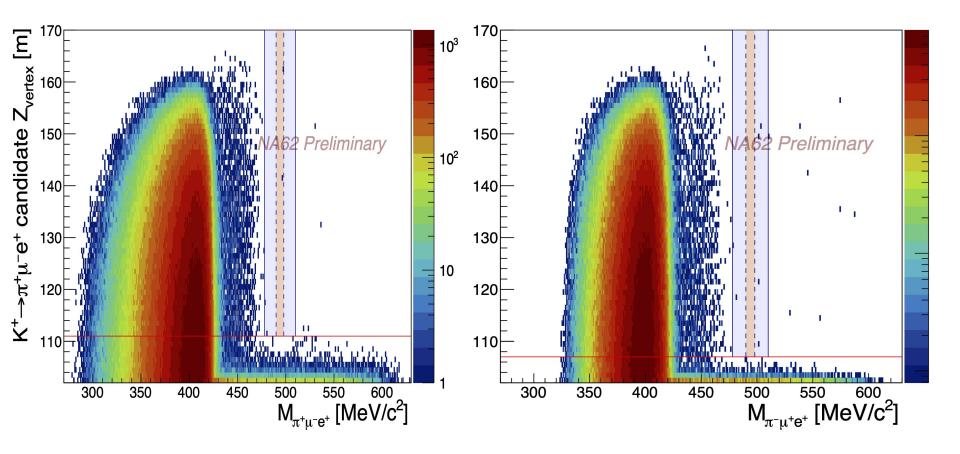
In signal region

$$n_{bkg} = 1.06 \pm 0.20, \quad n_{obs} = 0$$

$$Br(K^+ o\pi^-\mu^+e^+) < 4.2 imes 10^{-11} \,\, @ \,\, 90\% \,\, C. \, L$$

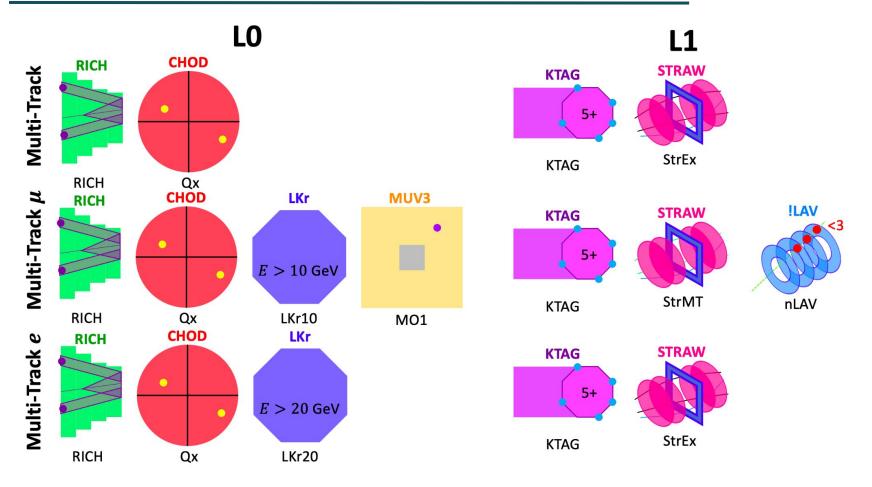
[Counting experiment, CLs treatment]

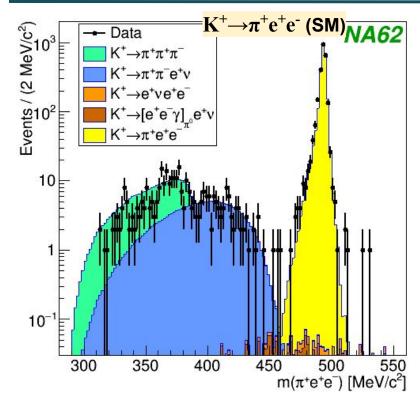
Summary: LN & LF violating searches at NA62


	Previous UL @ 90% C.L	NA62 UL @ 90% C.L	
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	8.6 × 10 ⁻¹¹	4.2 × 10 ⁻¹¹	2017 data → improved by factor 2 Phys. Lett. B 797 (2019) 134794
$K^+ \rightarrow \pi^- e^+ e^+$	6.4×10^{-10}	2.2×10^{-10}	2017 data → improved by factor 3
$K^+ \rightarrow \pi^- \mu^+ e^+$	5.0×10^{-10}	4.2×10^{-11}	2017+2018 data → improved by factor 12
$K^+ \rightarrow \pi^+ \mu^- e^+$	5.2 × 10 ⁻¹⁰	6.6 × 10 ⁻¹¹	2017+2018 data → improved by factor 8 arXiv:2105.06759 (submitted to PRL)
$\pi^0{ ightarrow}\mu^-e^+$	3.4×10^{-9}	3.2×10^{-10}	2017+2018 data → improved by factor 13
$K^+ o \pi^+ \mu^+ e^-$	1.3 × 10 ⁻¹¹	-	sensitivity similar to the previous search
$\pi^0\!\! o\!\!\mu^+\!e^-$	3.8×10^{-10}	-	sensitivity similar to the previous search
$K^+ \rightarrow \mu^- v e^+ e^+$	2.1 × 10 ⁻⁸	-	Ongoing analysis: 2017 data $S.E.S \sim 1 \times 10^{-10}$
$K^+ \rightarrow e^- v \mu^+ \mu^+$	no limit	-	Ongoing analysis: 2017 data $S.E.S \sim 5 \times 10^{-11}$

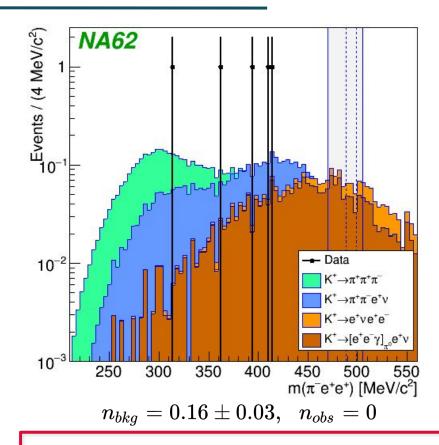
- Large improvements on most of the LN & LF violating K^+ and π^{θ} decays o sensitivity up to 10⁻¹¹
- NA62 will resume data taking in summer 2021 with higher beam intensity and new detectors

Backup slides


$K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+$ Analysis: K3 π Upstream background

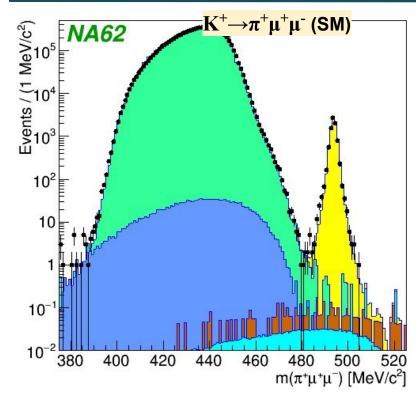

Trigger chains schematic illustration

$K^+ \rightarrow \pi^- e^+ e^+$ Analysis (2017 data)



Normalization: $\mathbf{K}^+ \rightarrow \pi^+ e^+ e^-$ (SM)

$$N_K = (2.14 \pm 0.04_{stat} \pm 0.06_{ext}) \times 10^{11}$$


Additional RICH condition for π^+/e^+ separation

$$Br(K^+ o\pi^-e^+e^+) < 2.2 imes 10^{-10} \,\, @ \,\, 90\% \,\, C. \, L$$


$K^+ \rightarrow \pi^- \mu^+ \mu^+$ Analysis (2017 data)

Normalization: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ (SM)

$$N_K = (7.94 \pm 0.09_{stat} \pm 0.21_{ext}) \times 10^{11}$$

$$n_{bkg} = 0.91 \pm 0.41, \;\; n_{obs} = 1$$

$$Br(K^+ o\pi^-\mu^+\mu^+) < 4.2 imes 10^{-11} \,\, @ \,\, 90\% \,\, C. \, L$$