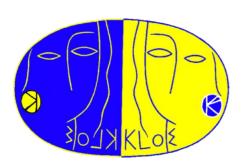
EPS-HEP Conference 2021

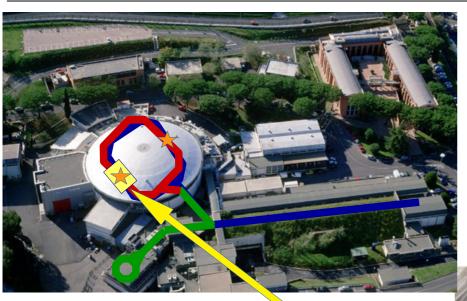
European Physical Society conference on high energy physics 2021


Online conference, July 26-30, 2021

Flavour Physics and CP Violation at KLOE-2

28.07.2021

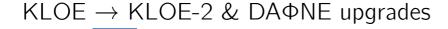
Aleksander Gajos Jagiellonian University, Kraków, Poland


on behalf of the KLOF-2 Collaboration

KLOE and KLOE-2 at the DA ϕ NE ϕ -factory

- Location: Laboratori Nazionali di Frascati, Italy
- DAΦNE: e⁺e⁻ collider and a "Phi factory"
 - $\sqrt{s} = M_{\phi} \approx 1020 \text{ MeV}$ (off-peak operation possible as well)
 - neutral kaon pairs produced in Φ decays in an entangled state
 - the only existing setup of this kind

KLOE/KLOE-2 timeline:



• 2001-2002

 $L_{peak} = 1.5 \times 10^{32} \, cm^{-2} s^{-1}$

• 2005-2006:

 $\int Ldt = 8.5 \text{ pb}^{-1} \text{ per day}$

KLOE-2 datataking campaign:

Nov 2014 – Mar 2018


 $L_{peak} = 2.4 \times 10^{32} \, cm^{-2} s^{-1}$ $\int Ldt = 14 \text{ pb}^{-1} \text{ per day}$

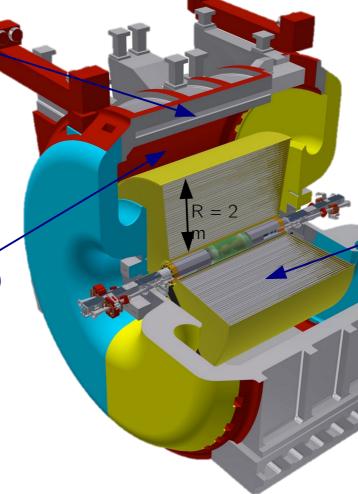
The **K LO**ng **E**xperiment – detector

Superconducting magnet

• B = 0.52 T

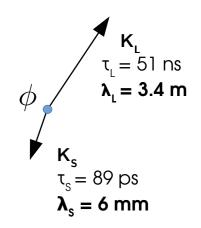
barrel with C-shaped endcaps

lead and scintillating fibers


• hermetic coverage (98% 4π)

$$\sigma_t = \frac{54 \, ps}{\sqrt{E[GeV]}} \oplus 140 ps$$

$$\sigma_E = \frac{5.7\%E}{\sqrt{E[GeV]}}$$


$$\sigma_x = \sigma_y = 1 \, cm$$

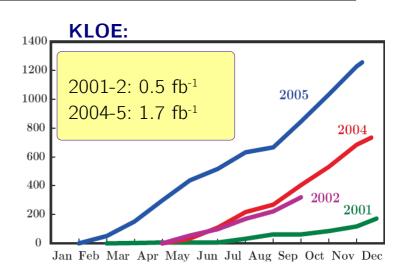
$$\sigma_z = \frac{1.2 \, cm}{\sqrt{E[GeV]}}$$

- gas: 90% He +10% C₄H₁₀
- $R_{IN} = 25 cm, R_{OUT} = 2 m$
- $\sigma_{xy} \approx 150 \,\mu\text{m}$, $\sigma_{z} \approx 2 \,\text{mm}$
- $\sigma(p_T)/p_T = 0.4\%$

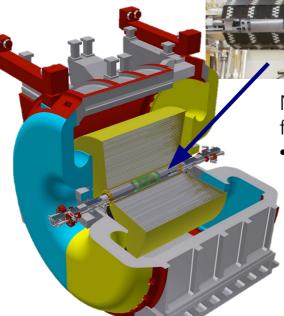
KLOE-2 upgrade and datataking

Inner Tracker

OCALT

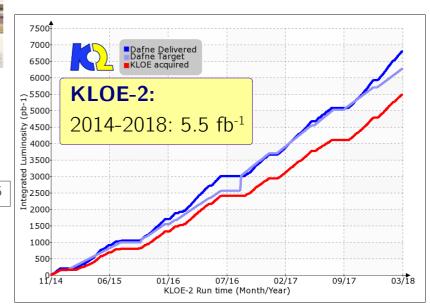


unduction


 First cylindrical GEM detector in a HEP experiment

- 4 layers of trilple-GEM
- Increasing vertexing resolution and efficiency
- Very low material budget (2% X₀)

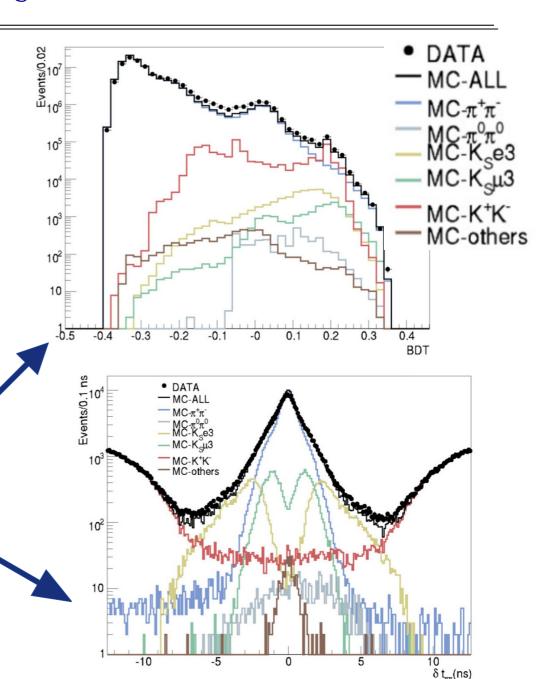
NIMA 628 (2011),194, NIM A 958 (2020), 162366


New calorimeters around the final focusing magnets

IT

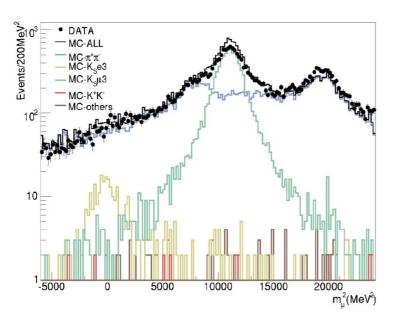
 Photon veto and energy measurement at low angles

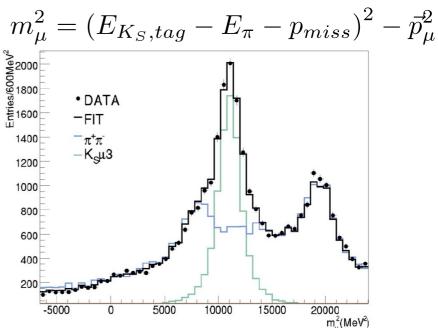
NIMA 617 (2010),105 NPB 197 (2009), 215


Measurement of the $K_s \rightarrow \pi \mu \nu$ branching ratio

Motivation:

- BR($K_S \rightarrow \pi \mu \nu$) was never measured before
- Independent determination of $|V_{US}|$
- Test of the lepton-flavour universality


Analysis:


- Performed with the complete KLOE dataset (1.7fb⁻¹)
- Presence of K_S tagged by interaction of K_L in the calorimter
- event selection based on:
 - BDT using kinematic variables
 - time-of-flight analysis
- Signal efficiencies obtained using K_L→πμν events

Measurement of the $K_S \rightarrow \pi \mu \nu$ branching ratio

- $K_s \rightarrow \pi \mu \nu$ events counted using a fit to the spectrum of reconstructed muon mass squared
- $K_S \rightarrow \pi + \pi$ used as a normalization sample
- 7223 ± 180 signal events found

First ever measurement:

BR(K_S
$$\rightarrow$$
πμν) = (4.56 ± 0.11_{stat} ± 0.17_{syst}) x 10⁻⁴

in agreement with the expected value assuming lepton-flavour universality:

BR(
$$K_s \rightarrow \pi \mu \nu$$
) = (4.69 ± 0.06) x 10⁻⁴

$$\Gamma(\pi^{\pm}\mu^{\mp}\nu_{\mu})/\Gamma_{\text{total}}$$

VALUE (units 10^{-4})

4.56 ± 0.20 OUR FIT

4.56 ± 0.11 ± 0.17

7223

 $\Gamma_{\text{DOCUMENT ID}}$

TECN

COMMENT

4.56 ± 0.11 ± 0.17

7223

 $\Gamma_{\text{DOCUMENT ID}}$

TECN

COMMENT

A COMMENT

Output

Description:

¹ Value obtained by normalizing to the KLOE measurement B($K_S^0 \to \pi^+\pi^-$) = (69.196 \pm 0.051)%. Also comparison with the PDG 18 based derived value leads to a lepton flavor universality test $|V_{us} \ f_+(0)|^2_{K_S^0 \to \pi\mu\nu}/|V_{us} \ f_+(0)|^2_{K_S^0 \to \pi\,e\,\nu} = 0.975 \pm 0.044$.

Measurement of the charge asymmetry in $K_S \rightarrow \pi e \nu$

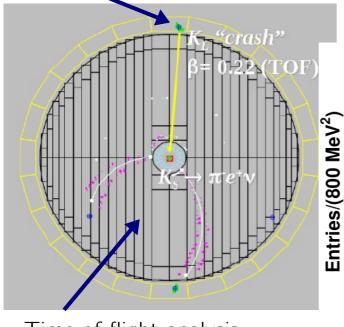
Charge asymmetry in semileptonic decays of neutral kaons:

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ \nu) - \Gamma(K_{S,L} \to \pi^+ e^- \bar{\nu})}{\Gamma(K_{S,L} \to \pi^- e^+ \nu) + \Gamma(K_{S,L} \to \pi^+ e^- \bar{\nu})}$$

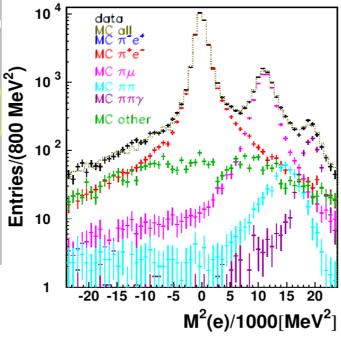
 $S = decays \ of \ K_{_{S}} \qquad L = decays \ of \ K_{_{L}}$

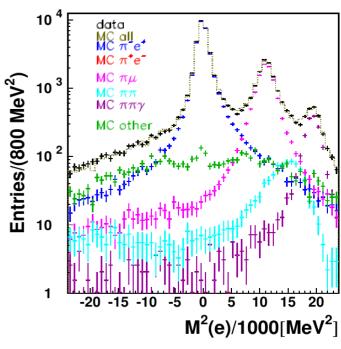
 $A_{S,L} \neq 0 \Rightarrow CP \text{ violation}$ $A_S \neq A_L \Rightarrow CPT \text{ violation}$ Assuming CPT invariance: $A_S = A_L = 2Re(\epsilon_K) \approx 3 \times 10^{-3}$

Analysis:


 K_s tagged by K_L interaction in the calorimeter

Signal: $\Phi \to K_S K_L \to \pi e \nu K_L (EMC)$


Main backgrounds:

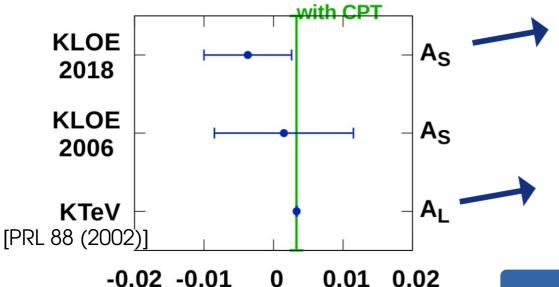

$$K_{_{S}} \rightarrow \pi^{+}\pi^{-}(\gamma)$$
 $K_{_{S}} \rightarrow \pi^{+}\pi^{-} \rightarrow \pi \mu \nu$ (pion decay)

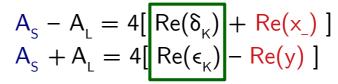
Signal event counting on $M^2(e) = [E_{K_S} - E(\pi) - E_{\nu}]^2 - p^2(e)$

Time of flight analysis for the K_s decay products

New result on charge asymmetry in $K_s \rightarrow \pi e \nu$

New most precise A_s measurement:


$$A_s = (-4.9 \pm 5.7_{stat} \pm 2.6_{syst}) \times 10^{-3}$$


Previous KLOE measurement:

Combined result on A_s : $A_s = (-3.8 \pm 5.0_{stat} \pm 2.6_{syst}) \times 10^{-3}$

JHEP 1809 (2018) 021

known from other measurements

The most precise determination of Re(x_) and Re(y):

$$Re(x_{-}) = (-2.0 \pm 1.4) \times 10^{-3}$$

$$Re(y) = (1.7 \pm 1.4) \times 10^{-3}$$

Perpsectives:

Using over 5 fb⁻¹ of KLOE-2 data, the statistical uncertainty on $A_{\rm S}$ can be reduced to 3 x 10⁻³

Lepton charge asymmetry

Search for CP violation with rare K_S decays

$$\eta_{+-0} = \frac{\langle \pi^{+} \pi^{-} \pi^{0} | H | K_{S} \rangle}{\langle \pi^{+} \pi^{-} \pi^{0} | H | K_{L} \rangle} = \varepsilon + \varepsilon'_{+-0}$$

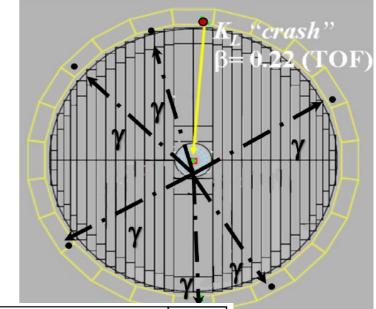
$$\eta_{000} = \frac{\langle \pi^{0} \pi^{0} \pi^{0} | H | K_{S} \rangle}{\langle \pi^{0} \pi^{0} \pi^{0} | H | K_{L} \rangle} = \varepsilon + \varepsilon'_{000}$$

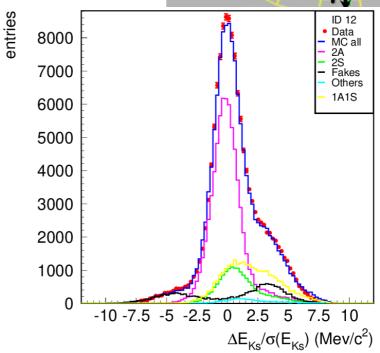
In the lowest order of
$$\chi PT$$
: $\epsilon'_{000} = \epsilon'_{+-0} = -2\epsilon'$ $Im(\eta_{+-0}) = -0.002 \pm 0.009$ $Im(\eta_{000}) = (-0.1 \pm 1.6) \times 10^{-2}$

$K_s \rightarrow 3\pi^0$ – a geniune CP-violating decay

- SM prediction: BR($K_S \rightarrow 3\pi^0$) = 1.9 x 10⁻⁹
- Best upper limit comes from **KLOE**:
 - BR($K_S \rightarrow 3\pi^0$) < 2.6 x 10⁻⁸
 - $|\eta_{000}|$ < 0.0088 @ 90% C.L.

Phys Lett. B 723 (2013) 54

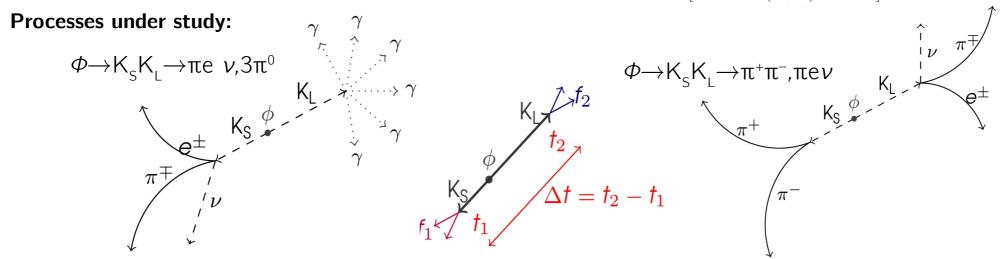

$K_S \rightarrow \pi^+\pi^-\pi^0$


- CP-violating only for L=0, 2
- current accuracy ~30%
- search for $K_S \rightarrow \pi^+ \pi^- \pi^0$ with the KLOE dataset is in progress

Search for $K_S \rightarrow 3\pi^0$ with KLOE-2

$K_s \rightarrow 3\pi^0$ at KLOE-2

- KLOE-2 data analysis ongoing
 - about 5 fb⁻¹
- Tagging of K_S with K_L interaction in the calorimeter
- $K_S \rightarrow 2\pi^0$ (4 prompt photons) used as normalization sample
- Main background: $K_S \rightarrow 2\pi^0$ with 2 split/accidental calorimeter clusters
- Also testing an MVA approach
- Expected sensitivity
 with full KLOE-2 statistics &
 optimized analysis ≤10-8



Direct T and CPT tests in transitions of neutral kaons

direct, model independent tests

Nucl. Phys. B 868 (2013) 102 JHEP 1510 (2015) 139

- only feasible with entangled neutral mesons
- the only measurement to date: T violation @ BaBar (B mesons) >5σ [PRL 109 (2012) 211801]

Observables of the tests (we focus on the asymptotic region):

$$R_2^T(\Delta t) \sim \frac{I(\pi^+ e^- \nu, 3\pi^0; \Delta t)}{I(\pi^+ \pi^-, \pi^- e^+ \nu; \Delta t)}$$

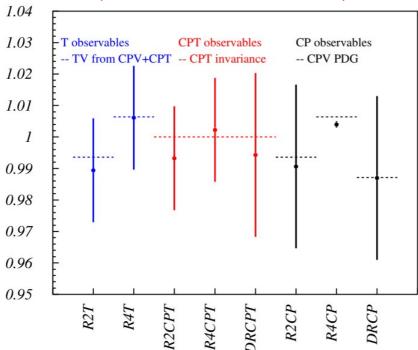
$$R_2^T(\Delta t) \sim \frac{I(\pi^+e^-\nu, 3\pi^0; \ \Delta t)}{I(\pi^+\pi^-, \pi^-e^+\nu; \ \Delta t)} \qquad \begin{array}{c} \text{CPT-violation} \\ \text{sensitive} \end{array} \qquad R_2^{CPT}(\Delta t) \sim \frac{I(\pi^+e^-\bar{\nu}, 3\pi^0; \Delta t)}{I(\pi^+\pi^-, \pi^+e^-\bar{\nu}; \Delta t)}$$

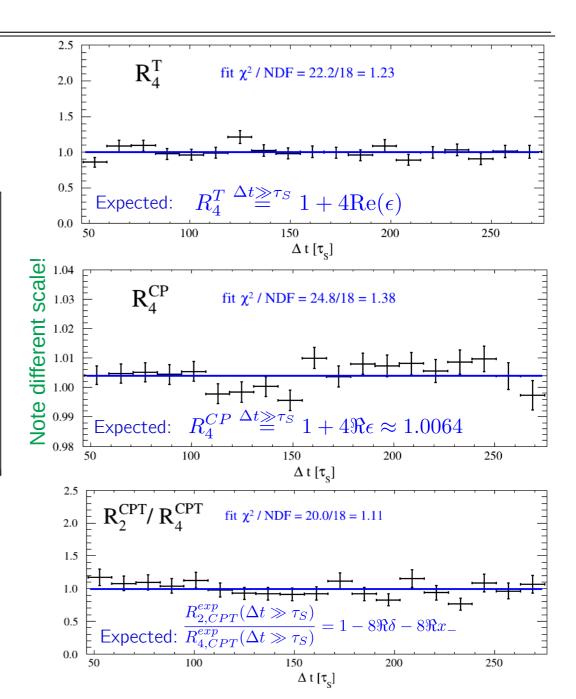
$$R_4^T(\Delta t) \sim \frac{I(\pi^- e^+ \nu, 3\pi^0; \Delta t)}{I(\pi^+ \pi^-, \pi^+ e^- \nu; \Delta t)}$$

$$R_4^{CPT}(\Delta t) \sim \frac{I(\pi^- e^+ \nu, 3\pi^0; \Delta t)}{I(\pi^+ \pi^-, \pi^- e^+ \nu; \Delta t)}$$

Double ratios:

$$\frac{R_2^T}{R_4^T}(\Delta t) = \frac{I(3\pi^0, e^-)}{I(3\pi^0, e^+)} \frac{I(\pi^+\pi^-, e^-)}{I(\pi^+\pi^-, e^+)}$$


$$\frac{R_2^T}{R_4^T}(\Delta t) = \frac{I(3\pi^0, e^-)}{I(3\pi^0, e^+)} \frac{I(\pi^+\pi^-, e^-)}{I(\pi^+\pi^-, e^+)} \qquad \qquad \frac{R_2^{CPT}}{R_4^{CPT}}(\Delta t) = \frac{I(3\pi^0, e^-)}{I(3\pi^0, e^+)} \frac{I(\pi^+\pi^-, e^+)}{I(\pi^+\pi^-, e^-)}$$


Direct T and CPT tests in transitions of neutral kaons

Analysis at the final stage

Preliminary results

(statistical uncertainty only)

Summary and perspectives

- KLOE & KLOE-2 data sample = ~8 fb⁻¹ = ~2.4 x 10^{10} of ϕ meson decays recorded
 - Worldwide-unique data sample
 - Neutral kaon pairss especially useful for CP violation studies and strangeness physics
- Results are still obtained from KLOE data:
 - Improved determination of charge asymmetry in K_s semileptonic decays
 - First measurement of BR($K_s \rightarrow \pi \mu \nu$)
 - Direct T and CPT tests in transitions of neutral kaons

Also see the poster

Tests of CPT symmetry and quantum coherence with entangled neutral kaons at KLOE-2 by Riccardo D'Amico

- First KLOE-2 data analyses are in progress:
 - Search for the CP-violating $K_{_S} \to 3\pi^0$ decay
- More new and improved results expected from KLOE-2

KLOE-2 Physics programme:

KLOE-2 Collaboration: EPJ **C68** (2010) 619

Proceedings: EPJ WoC 166 (2018) https://agenda.infn.it/event/kloe2ws

Thank you for your attention!