

Measurement of the neutron electric dipole moment in the nEDM and n2EDM experiments

EPS 2021

Benoit Clément (on behalf of the n2EDM collaboration)

Electric dipole moments

For the theorist : CP-violating term

...in the EM current : $\mathcal{L}_{int} = \mathbf{i} \frac{d}{2} \overline{\psi} F_{\mu\nu} \sigma^{\mu\nu} \gamma^5 \psi$ Important for Baryon asymmetry !

In standard model, only through 3 (quarks) or 4 (leptons) loops EW diagrams $\Rightarrow d_n \approx 10^{-31} e. cm$

BSM could contribute through lower order loops : $d_n \sim 10^{-29} \text{ to} 10^{-26} e. \text{ cm}$

For the experimentalist : T-violating effect

At low energy (non relativistic limit): $\mathcal{L}_{int} = -\vec{d} \cdot \vec{E} = d\vec{j} \cdot \vec{E}$ Coupling between the **Spin** and an external **Electric Field**

Change in Larmor frequency if B and E fields are (anti)parallel

$$2\pi f = \frac{2\mu}{\hbar} |B| \pm \frac{2d}{\hbar} |E|$$
$$f(\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} d|E|$$

 $d_n < 3 \times 10^{-26} e.cm$ @ 90% CL J.M. Pendlebury *et al,* Phys. Rev. D **92** 092003 (2015)

How to measure nEDM

Ultracold neutrons :

- $E_{kin} \sim 100 \text{ neV}, v \sim 4 \text{ m. s}^{-1}$
- Reflected at all incidences
- Sensitive to gravity Can be :
- guided through simple tubes
- stored in material « bottle »

Allow large storage times

Count neutrons in \uparrow and \downarrow spin states Relate **asymmetry** to **precession frequency**

Statistical sensitivity: $\sigma_{d_n} = \frac{\hbar}{2 \alpha E T \sqrt{N}}$

 $1 \text{ cycle} : T \approx 180 \text{ s}, N = 5000 \text{ to } 15000$

The nEDM experiment

nEDM collaboration : \sim 50 physicists from 8 countries and 16 labs

Data taken over two years (2015 and 2016) at PSI

Using the apparatus used at ILL by the RAL/sussex collaboration 54 068 cycles of 180 s in 99 magnetic configurations (sequence) $\sim 11 400$ UCN per cycle Electric field: E ~ 11 kV/cm Magnetic field: $B_0 \sim 1 \mu$ T

$$\sigma_{d_n} = rac{\hbar}{2ETlpha\sqrt{N_{ ext{tot}}}}$$

Statistical sensitivity \rightarrow 1, 1 × 10⁻²⁶ e cm

Magnetic management

Controlling the magnetic field and gradients:

- By reducing the ambiant magnetic field :
 - Passive mu-metal shielding,
 - Active compensation coils,
 - Magnetic free environment.
- By measuring the field :
 - Cs magnetometers outside the chamber : field gradients,
 - Hg comagnetometer : measure (almost) the same field as seen by neutrons.

But any effect on Hg measurement linearly dependent on \vec{E} will induce a false Edm

Using magnetic gradients in the analysis

Due to gravity, there is an average height difference of gaseous Hg and ultracold neutrons $\langle z \rangle = -0,39$ cm and feel slightly different fields. Both frequency ratio and false Hg edm depends on this G_{Grav} gradient

- Create magnetic gradients building various magnetic configurations
- For each configuration: fit $\mathcal{R}(E) = \frac{f_n}{f_{H_n}} = \mathcal{R}_0 \frac{2d_n}{\hbar|\gamma_n|B_0}E$

• Use maps of the magnetic field to measure higher order gradients \widehat{G} and the transverse field inhomogeneities $\langle B_T^2 \rangle$

Final result

Two analysis teams working on two level blinded data :

- optimize the selection and debug the analysis code independently

- **First unblinding** : check if central value are consistent between teams

- Second unblinding : Final results !

 $| \rightarrow (-0,09 \pm 1,03) \times 10^{-26} e \text{ cm}$ $|| \rightarrow (+0,15 \pm 1,07) \times 10^{-26} e \text{ cm}$

C. Abel et al. Phys. Rev. Lett. **124**, 081803 – Published 28 February 2020

 $d_n = (0, 0 \pm 1, 1_{\text{stat}} \pm 0, 2_{\text{syst}}) \times 10^{-26} e \text{ cm}$ Previous : $d_n = (-0.2 \pm 1.5_{\text{stat}} \pm 1.0_{\text{syst}}) \times 10^{-26} e \text{ cm}$

Systematics overview

False	Hg EDN
Other	effects

L

	Effect	shift	error
٢	Error on $\langle z \rangle$	-	7
4	Higher order gradients \hat{G}	69	10
	Transverse field correction $\langle B_{\rm T}^2 \rangle$	0	5
	Hg EDM[8]	-0.1	0.1
	Local dipole fields	-	4
	$v \times E$ UCN net motion	-	2
	Quadratic $v \times E$	-	0.1
	Uncompensated G drift	-	7.5
	Mercury light shift	-	0.4
L	Inc. scattering ¹⁹⁹ Hg	-	7
20	TOTAL	69	18

Field mapping

Cesium magnetometers

Optically Pumped Cs Magnetometers Enabling a High-Sensitivity Search for the Neutron EDM, Phys. Rev. A 101, 053419

Final systematic :

 $\times 10^{-28}$ e. cm

 $\pm 0.2 imes 10^{-26}$ e.cm

Scans for magnetic contaminations at PTB Berlin

Coming next : n2EDM project

The nEDM collaboration has demonstrated its capacity to control systematic effects at a few $10^{-27}ecm$

New spectrometer : 2022-... Control of the magnetic field homogeneity and measurement : improved systematics

- Dual chamber apparatus : simultaneous measurement of both field configuration
- Colossal active and passive magnetic shield
- Advanced magnetometry (external and comagnetometry)

• 180 kV over 12cm

Increase the statistics

- 5 years data taking
- Larger chamber (Volume x 7)

Detecto

Eur. Phys. J. C (2021) 81: 512

UCNs Guides

Hg polarization chambers

Magnetic shielding

Passive magnetic shield

Six-layer mu-metal cube 5x5x5m external Shielding factor (magnetic field suppression) ~100k

Active magnetic shield

Grid of coils ("Rubiks Cube") outside of the passive shield

~50 km of wires

10⁹ 10⁸ 10⁷ 10⁶ 10⁶ 10⁵ 10⁵ 0.01 0.10 0.10 1 10

Current Status (07/21)

Vaccum tank within the shield

Magnetic mapping robot inside the tank

Comming next : B0 coil in august, UCN guides this autumn ,precession chamber in 2022...

n2EDM sensitivity

Statistical sensitivity:

	nEDM	n2EDM
Chamber type	Single	Double
Diameter	47cm	80cm
N : number of neutrons per cycle	15k	121k
T : cycle duration	180s	180s
E : electric field	11 kV/cm	15 kV/cm
lpha : visibility	0.75	0.8
σ_{d_n} , per day	$11 \times 10^{-26} e.cm$	$2.6 \times 10^{-26} e.cm$
σ_{d_n} , 5 years	$9.5 \times 10^{-27} e.cm$	$1.1 \times 10^{-27} e.\text{cm}$

Goal

Reach $< 10^{-26} e.$ cm in a year

Reach $< 10^{-27} e.$ cm in 5 years

Conclusion

nEDM experiment result

New result on the neutron EDM by the nEDM collaboration (PSI): $d_n = (0, 0 \pm 1, 1_{stat} \pm 0, 2_{syst}) \times 10^{-26} e \text{ cm}$

Still (unfortunately) compatible with zero, translate into a limit: $d_n < 1.8 \times 10^{-26} e \text{ cm} @ 90\% \text{ CL}$

Improve the limit by a **factor 2**.

Systematics are reduced by a **factor 5**: Show a good understanding and control of the systematics effects.

n2EDM apparatus

- design includes our understanding of systematics to further improve the sensitivity.

- improved statistical sensitivity (higher volume, higher E field)

GOAL : reach 10^{-27} *e*.cm in 2027

Extra material

Based on ultra cold neutron storage (all but one)

Neutron production : spallation or nuclear reactor + thermalisation + inelastic cooling (He-II or solid D₂)

Room temperature experiments : UCN need to be produced (source) then extracted/guided to the experimental chamber

Cryogenic experiments : UCN production and EDM measurement takes place at the same place (in superfluid helium at 1K...)

Place	Neutron source	Concept	Stage/Readiness
SNS	Spallation + UCN production in situ	Cryogenic double chamber with helium comagnetometers	« large scale integration » phase
PSI	Spallation + sD2 UCN source	n2EDM: double Ramsey chamber with mercury comagnetometers	Source running, experiment under construction
LANL	Spallation + sD2 UCN source	double Ramsey chamber with mercury comagnetometers	Source running, experiment in design phase
TRIUMF	Spallation + superfluid He UCN source	double Ramsey chamber	Source under construction, experiment in conceptual phase
ILL	Reactor + superfluid He UCN source	panEDM: double Ramsey chamber, no comagnetometers	Source and experiment under construction
PNPI	WWR-M reactor + inpile superfluid He UCN source	Getting a really high density of UCNs	Source under construction
ESS	Spallation + Cold neutron beam	100m double beam + time of flight	Demonstration phase, small prototype operational @ ILL

Room temperature UCN experiments aiming at a precision of $\approx 1 \times 10^{-27} e$ cm

The co-magnetometer problem: vxE/c²

Frequency shift from a transverse magnetic noise \underline{B}

$$\delta f = \frac{\gamma^2}{4\pi} \int_0^\infty d\tau \operatorname{Im} e^{-i\omega\tau} \left\langle \underline{B}(0)\underline{B}^*(\tau) \right\rangle$$

$$d_{n \leftarrow \text{Hg}}^{\text{false}} = -\frac{\hbar |\gamma_n \gamma_{\text{Hg}}|}{2c^2} \langle xB_x + yB_y \rangle$$

B-field uniformity is critical $G = 1 \text{ pT/cm} \leftrightarrow d_{n \leftarrow \text{Hg}}^{\text{false}} = 4.4 \times 10^{-27} e \text{ cm}$

18/27

Beyond SM contribution

SM contribution through EW loops : $d_n \approx 10^{-33} e$ cm

The QCD contribution :
$$\mathcal{L} = \frac{\alpha}{8\pi} \theta \ G^{\mu\nu} \widetilde{G_{\mu\nu}}$$

No known mechanism to reduce θ to (nearly?) zero -> axions ?

 $\begin{array}{l} d_n \approx \theta \times 10^{-16} \ e \ \mathrm{cm} \\ \rightarrow \theta < 10^{-10} \\ \mathrm{ \ \ Strong \ CP \ problem \ \ \ \ }} \end{array}$

One loop contribution : for example MSSM contains ~40 CP violating imaginary parameters...

$$d_n \approx e \frac{\alpha}{4\pi} \frac{m_q}{M_{CPV}^2} \approx \left(\frac{1 \text{ TeV}}{M_{CPV}}\right)^2 \times 10^{-25} e \text{ cm}$$

Fig. 2. One-loop diagram which may contribute to d_n in a softly broken susy model.

Ellis, Ferrara, Nanopoulos, PLB **114** (1982). *EDM induced by soft mass terms for squarks and gluinos*

Two loops contribution :

Modified Higgs Yukawa coupling:

$$\mathcal{L} = -\frac{y_f}{\sqrt{2}} \left(\kappa_f \bar{f} f h + i \tilde{\kappa}_f \bar{f} \gamma_5 f h \right)$$

Barr, Zee, PRL **65** (1990)

Ultracold neutrons @ PSI

UCN source at the Paul Scherrer Institute

pulsed UCN source One kick per 5 min online since 2011

