

Final results of GERDA on the search for neutrinoless double beta decay

Yannick Müller On behalf of the GERDA collaboration

July 28, 2021

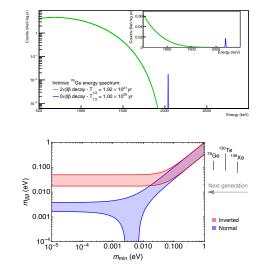
Physik-Institut, University of Zurich

Yannick Müller

Final results of GERDA

July 28, 2021 0/13

Signature and implications


- $2\nu\beta\beta$ decay in $^{76}{\rm Ge:}$
 - $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2\text{e}^- + 2\bar{\nu}_e$
 - continuous, broad spectrum

 $0\nu\beta\beta$ decay in ⁷⁶Ge: • ⁷⁶Ge \rightarrow ⁷⁶Se + 2e⁻

• peak at $Q_{\beta\beta} = 2039 \text{ keV}$

Physics implications:

- nature of neutrinos (Dirac vs Majorana)
- neutrino mass scale & ordering (normal vs inverted)
- violation of lepton number conservation
- matter-antimatter asymmetry in the Universe

Probing the Majorana mass

Half-life sensitivity

Majorana mass sensitivity:

non background-free vs background-free:

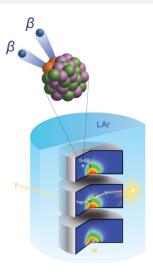
$$|m_{\beta\beta}| \propto \frac{m_e}{\sqrt{\mathcal{M}^2 \mathcal{G} T_{1/2}}}$$

- Majorana mass definition $|m_{\beta\beta}| = \left|\sum_{i} U_{ei}^2 m_i\right|$
- nuclear matrix element M
- phase space factor G
- half-life of $0\nu\beta\beta$ $T_{1/2}$

$$T_{1/2} \propto f \epsilon \sqrt{\frac{Mt}{B \ \sigma_E}}$$
 vs $T_{1/2} \propto f \epsilon M t$

- enrichment fraction f
- efficiency ϵ
- mass M
- measurement time t
- background index B
- energy resolution σ_E at Q_{ββ}

\rightarrow low background level & good energy resolution crucial


Yan	nick	Mül	ller

Final results of GERDA

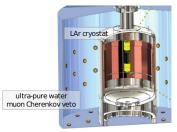
GERDA approach

Science 365, 1445 (2019)

- $0\nu\beta\beta$ source = detector, high detection efficiency
- operate high-purity Ge (HPGe) detectors, semiconductors, bandgap O(1eV), high energy resolution, no measurable internal background contamination, allow for event pulse shape discrimination (PSD)
- liquid argon (LAr) serves as coolant, shield & active veto

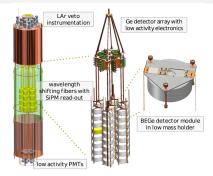
GERDA infrastructure

Eur. Phys. J. C 78 388 (2018)


Underground site:

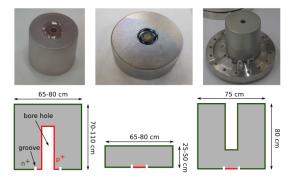
- Laboratori Nazionali del Gran Sasso (LNGS), Italy
- 1400m rock overburden (3500 mwe), cosmic muon reduction \$\mathcal{O}\$ (10⁶)

Experimental setup:


- water tank equipped with PMTs
- cryostat filled with LAr
- detector array surrounded by LAr veto instrumentation

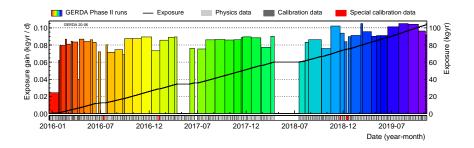
Detector operation

- up to 41 detectors enriched in ⁷⁶Ge (up to 87% enrichment)
- 6 to 7 strings, covered by nylon cylinders
- surrounded by fibers coated with the wavelength-shifter TPB (tetraphenyl butadiene)



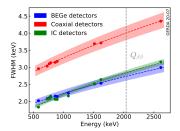
Yannick Müller

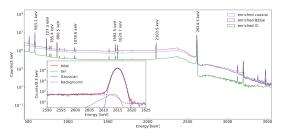
Detector types


Eur. Phys. J. C. 79 11 978 (2019) Eur. Phys. J. C, 81 6 505 (2021)

- coaxial shaped (Coax): 1 to 3 kg weight
- broad energy germanium (BEGe): ~ 0.7 kg weight, superior resolution & PSD
- inverted coaxial (IC): combine ~ 2 kg weight, superior resolution & PSD

Data taking

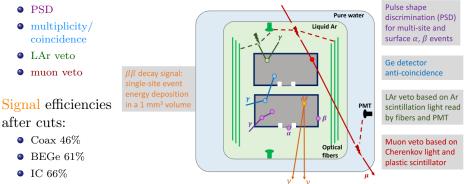

- 2011-2013: Phase I, 23.5 kg yr exposure
- 2015-2019: Phase II, 103.7 kg yr exposure, installation of LAr veto, upgrade with IC detectors in 2018, operation in background-free regime



Calibration

arXiv:2103.13777, to be published in Eur. Phys. J. C

- weekly calibrations with 3 ²²⁸Th sources
- use γ lines of known energy to convert ADC to keV
- peak fitting algorithm to determine each detector's resolution
- Gaussian mixture models to determine resolutions per detector type


 \rightarrow GERDA achieved energy resolutions (FWHM) of \sim 0.15 % at $Q_{\beta\beta}$

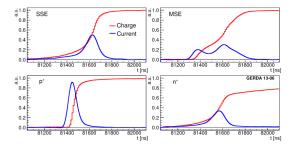
Yannick Müller

Final results of GERDA

Background reduction

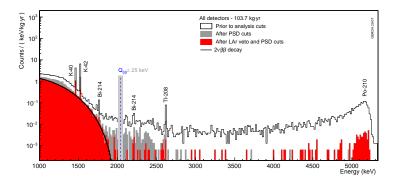
Analysis cuts:

 \rightarrow \sim 60 % signal detection efficiency after all background cuts


Yannick Müller

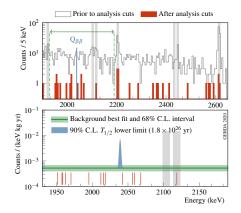
Final results of GERDA

Pulse shape discrimination

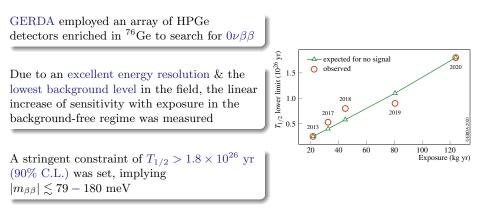

Eur. Phys. J. C 73 2583 (2013)

- single-site events: signal-like
- multi-site events: induce double-peak structure
- surface α events: fast risetime, high current
- surface β events: incomplete charge collection
- rejection based on current amplitude over energy (A/E) for BEGe, IC, & on artificial neural network comparing pulse shape for Coax

Blinded analysis


- ± 25 keV around $Q_{\beta\beta}$ blinded
- spectrum well understood: $\lesssim 0.5$ MeV: ³⁹Ar, ~ 0.5 2 MeV: $2\nu\beta\beta$, $\gtrsim 4$ MeV: α
- flat background in $0\nu\beta\beta$ signal region

Final results


PRL 125, 252502 (2020)

- unbinned maximum likelihood fit of 13 events in region-of-interest
- combined fit of Gaussian signal & uniform background
- best limit on $T_{1/2}$ in the field
- lowest background level in the field: $B = 5.2 \times 10^{-4} \text{ cts} / \text{ keV} / \text{ kg} / \text{ yr}$

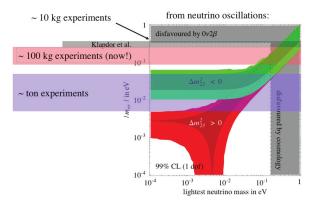
 $T_{1/2} > 1.8 \times 10^{26} \text{ yr } (90\% \text{ C.L.}) \rightarrow |m_{\beta\beta}| \lesssim 79 - 180 \text{ meV}$

Summary

Backup: moving forward

LEGEND:

- merger of GERDA & MAJORANA DEMONSTRATOR & new groups
- LEGEND-200 currently under construction, using the existing GERDA infrastructure, discovery sensitivity $T_{1/2} \gtrsim 10^{27}$ yr, start of data taking end of 2021
- $\bullet~$ LEGEND-1000 will reach discovery sensitivity $T_{1/2}\gtrsim 10^{28}~{\rm yr}$

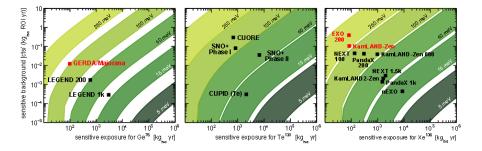


Other new physics searches with GERDA:

- bosonic dark matter (Axion-like particles & dark photons)
- majoron emission & light exotic fermions
- nucleon decays
- $\bullet\,$ neutrinoless double electron capture in $^{36}{\rm Ar}$

Backup: sensitivity to neutrino mass hierarchy

Constraints on the two neutrino mass ordering regimes:

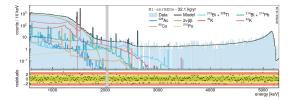


Pocar, Physics Procedia 37:6-15 (2012)

Final results of GERDA

Backup: comparison of experiments

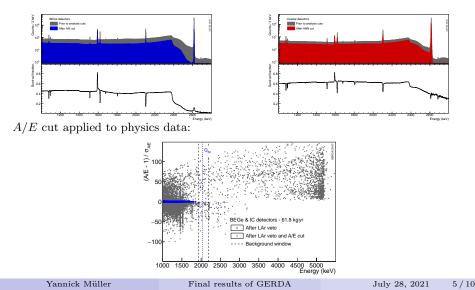
Comparison of rough sensitivity between ongoing & planned experiments (marked: 5 yr runtime):

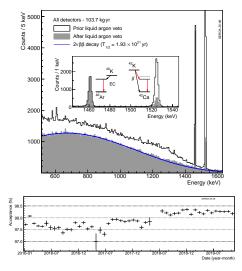

Agostini, Benato, Detwiler, Phys. Rev. D 96 053001 (2017)

Backup: background model

JHEP 03 (2020), 139

Components of the bkg. model of GERDA &

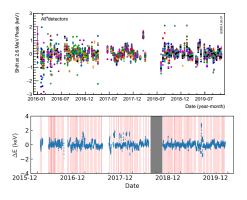

the implementation of the detector array in the MaGe simulation framework:

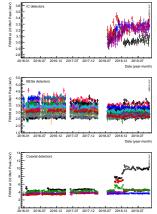

Backup: pulse shape cut

Survival fraction of calibration data events after applying pulse shape discrimination:

Backup: LAr veto cut

Background event reduction by applying the LAr veto cut:

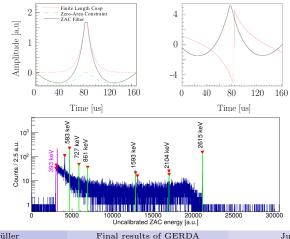



Yannick Müller

Backup: resolution stability

arXiv:2103.13777, to be published in Eur. Phys. J. C

Time behaviour of energy scale & resolution stability of the detectors, determined via calibrations & pulser scans:

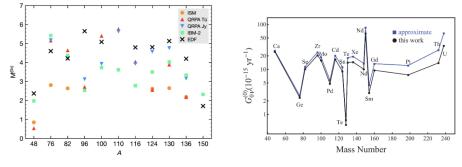


Backup: energy estimator

Eur. J. Phys. C 75 255 (2015)

Event energy estimation (in uncalibrated arb. energy units) from integrated signal waveform via Gaussian & zero-area cusp filter, then conversion into physical units via calibration:

Yannick Müller


Backup: double beta decay

Comparison of the different isotopes undergoing double beta decay:

isotope	Q-value [MeV]	nat. abundance [%]	-	
¹¹⁰ Pd	2.02	11.7	Even-A	
$^{76}\mathrm{Ge}$	2.04	7.73		
124 Sn	2.29	5.8	Odd-odd	
136 Xe	2.46	8.86	Even-even	
$^{130}\mathrm{Te}$	2.53	34.1		
$^{116}\mathrm{Cd}$	2.81	7.5	B*B	
82 Se	3.00	8.7	Z-2 Z-1 Z Z+1 Z+2	
$^{100}\mathrm{Mo}$	3.03	9.8		
96 Zr	3.35	2.8	Saakyan, Review of Nuclear and Particle Science 63 503 (2013)	
$^{150}\mathrm{Nd}$	3.37	5.6	500000 00 000 (2010)	
48 Ca	4.27	0.187		

Backup: nuclear matrix element & phase space factors

Comparison of nuclear matrix elements & phase space factors of different isotopes:

Gomez-Cadenas, Martin-Albo, PoS GSSI 14 004 (2015)

Kotila, Iachello, Phys. Rev. C 85 034316 (2012)