

NEX I

Measurement of the ¹³⁶Xe $\beta\beta2\nu$ half-life in NEXT-White

EPS-HEP Conference 2021

European Research Council Established by the European Commission erc Supporting top researchers

Pau Novella, IFIC (CSIC & U.V.) On behalf of the NEXT Collaboration

Overview: The NEXT Project

Search for the $\beta\beta0\nu$ decay with a HPXe-TPC

NEXT: HP Gas-Xe TPC

• Sensitivity to the $\beta\beta0\nu$ decay:

 $T_{1/2}^{-1} \propto a \cdot \epsilon \cdot \sqrt{\frac{Mt}{\Delta E \cdot B}}$

Scint/Ionization

136Xe

→ Cheap/Easy to enrich

The NEXT TPC Concept

Gas TPC with 2 dedicated readout planes

EL: linear gain, no avalanche fluctuations: optimize ΔE

NEXT-White: Physics @ LSC

The NEXT-Withe Detector

NEXT-White @ LSC

- Infrastructures: seismic platform, lead castle, Rn abatement system
- Available xenon: 100 kg of ¹³⁶Xe and 100 kg of Xe depleted in ¹³⁶Xe (~5 kg used)
- Installation/commissioning in 2015, stable operation since October 2016

NEW-White Operation

- 2016-2018: Calibration campaigns
 - @ 7/10 bar with ¹³⁶Xe-depleted gas
 - ⁸³Kr, ¹³⁷Cs, ²²⁸Th (²²Na, ⁵⁶Co)
- 2018-2019: background measurement
 - @10 bar with ¹³⁶Xe-depleted gas (Run-IV)

EPS2019

• 2019-2021: $\beta\beta 2\nu$ measurement $\rightarrow {}^{136}$ Xe-enriched (Run-V) + 136 Xe-depleted (Run-VI) EP^{S2021} P. Novella, NEXT@EPS2021
7

NEXT-White Data Taking

• Total run-times for $\beta\beta^2\nu$ analysis: 271.6 day (Run-V) and 208.9 day (Run-VI)

Run period	Start Date	Run time (day)	Triggers
Run-Va	25-02-2019	75.8	$617,\!896$
Run-Vb	13-09-2019	47.1	$412,\!902$
Run-Vc	08-01-2020	148.7	$1,\!117,\!101$
Run-V	25-02-2019	271.6	$2,\!147,\!899$
Run-VI	20-10-2020	208.9	$1,\!646,\!501$

• Slow-controls used to monitor detector stability:

P. Novella, NEXT@EPS2021

kr S2 (PE)

NEXT-White Calibration: ^{83m}Kr

- Point like source (41.5 keV) uniformly distributed in active volume (gas)
- Calibration XY maps:

- Detector *continuously* monitored and calibrated:
 - e- attachment and light yield
- JINST 13 (2018) no.10, P10014 (7bar)

P. Novella, NEXT@EPS2021

Date

NEXT-White Calibration: ²⁰⁸Tl/¹³⁷Cs

²³²Th/¹³⁷Cs gamma-ray interactions from external sources

NEXT-White Topological Signature

Signal vs Background rejection:

Simple track reconstruction:

> **Coarse image:** SiPM pitch, diffusion, light spread, ...

- **Richardson-Lucy deconvolution:** reduce image smearing
 - $\beta\beta$ event candidate @ 2.0 MeV:

DNNs: JINST 12 (2017) no.01, T01004 CNNs: JHEP 01 (2021) 189 SiPM: JHEP 10 (2019) 052

Selection efficiency:

> Sig. eff: 56.6% BG accept: 3.7%

ββ2v: Event Selection & Analysis Approaches

• Selections applied for different approaches and checks:

• Background and $\beta\beta2\nu$ fit approaches:

- Efficiencies from Tl-208 calibration data
 - double-e vs single-e efficiencies from events @ 1.6 MeV:

- Unique capabilities of NEXT:
- Topology-based BG rejection
- Background subtraction
 - ~BG-model-independent result

Systematic Uncertainties

Type	nary Source	Run-V	Run-VI	Correlated?
NEXT-White pre-	DAQ livetime	0.01%	0.01%	No
Norm.	Trigger efficiency	0.2%	0.2%	Yes
	Gas density	-	0.6%	No
	$\beta\beta$ selection	2.6/7.3%	2.8/7.3%	No
	¹³⁶ Xe fraction	0.4%	0.2%	No
	Xe atoms	0.2%	0.2%	Yes
Energy	Energy scale	0.25%	0.25%	Yes

ββ2v: Radiogenic Background

BG model based on extensive radio-purity campaign

- JINST 8 (2013) T01002, JINST 10 (2015) 05, P05006)
- Four isotopes (²¹⁴Bi, ²⁰⁸Tl, ⁶⁰Co, ⁴⁰K) and 84 sources Fiducial radiogenic background fit:
 - R+S(E+Z), 4 isotopes from 3 effective volumes

P 12 BG sources measured to be stable in time

Update w.r.t. JHEP 10 (2019) 051

P. Novella, NEXT@EPS2021

Anode

Other

$\beta\beta2\nu$: BG-model-dependent Fit

- Joint fit of the ¹³⁶Xe-enriched and the ¹³⁶Xe-depleted samples
- Rate of $\beta\beta$ events extracted along with total radiogenic background rates

- The ¹³⁶Xe-depleted sample improves the precision by constraining the backgrounds
- 3.9 σ measurement (4 σ expected), but poor goodness of fit: $\chi^2/dof = 142/114$, p-value = 4.2%

$\beta\beta 2\nu$: **BG-Subtraction Fit**

• Backround-subtracted $\beta\beta$ spectra: ¹³⁶Xe-enriched - ¹³⁶Xe-depleted (unique in NEXT!):

- Fit to the $\beta\beta 2\nu$ expectation (BG-model independent!): $T_{1/2}$ measured @ 4.1 sigma (3.8 σ expected)
- Fully consistent with BG-model-dependent fit, but excellent goodness of fit: $\chi^2/dof=14.6/21$

¹³⁶Xe $\beta\beta2\nu$ Measurements

The NEXT-100 Detector

JINST 7 (2012) T06001 TPC: Pressure Vessel: 100 kg active region Steel, up to 15 bar 130 cm drift length Tracking plane: **Energy Plane:** 136 4000-7000 SiPM 60 PMTs 30% coverage 1.0-1.5 cm pitch **Timeline: Goals:** 2021-2022: construction Energy resolution < 1% FWHM ٠ 2022-2025: Physics Improve radioactive budget Inner shield: >2025: upgrades 12 cm of copper **Competitive Search of** $\beta\beta0\nu$ Prepare the ton-scale...

Physics Case of NEXT-100

NEXT @ Ton-Scale: R&D

- Goal: explore the IH region with a HPXe-TPC
- Incremental approach towards a ton-scale detector

NEXT-HD

- SiPM instead of PMTs (main background source)
- Operation at low temperatures (reduce dark noise)
- Low diffusion gas mixtures (topological signature)
- WLS fibers for S1+S2 measurement
- R&D: DEMO++ and AXOLOTEL
- arXiv:1906.01743, arXiv:2005.06467

NEXT-BOLD

- Ba++ tagging using SMFI
- PRL 120 (2018) 132504
- Nature 583, 48-54 (2020)

P. Novella, NEXT@EPS2021

Summary

• NEW-White physics program concluded: unique capabilities of the HP-Xe TPC technology in the $\beta\beta$ 0v search

The NEXT Collaboration

Back Up

R&D: Proving the technology

2012-2014

• The NEXT-DBDM @ LBL (1 kg Xe):

Gas Xe EL-TPC: Energy resolution (only PMTs)

"Intrinsic" $\Delta E: 0.5\% @ Q_{hh}$

• The NEXT-DEMO @ IFIC (1.5 kg Xe):

Nucl.Ins.Meth. A708 (2013) JINST 8 (2013) P0400 JINST 8 (2013) P09011 JINST 9 (2014) 10, P10007 JINST 8 (2013) P05025 JINST 10 (2015) 03, P0302 JHEP 1601 (2016) 1045

Complete prototype: PMT+SiPM

$$\label{eq:lambda} \begin{split} \Delta E \mbox{ in large volume: } <<&1\% @ Q_{_{\beta\beta}} \\ \mbox{Proof of topological signature} \end{split}$$

NETX-White Trigger Efficiency

Isotopic Composition of the Xe Gas

Gas Density Variation

Background Model

Energy Scale

