Exploring neutrino long-range interactions in the cosmos

EPS-HEP 2021

Ivan Esteban

Center for Cosmology and Astroparticle Physics (CCAPP), Ohio State University

Based on arXiv:2101.05804, JCAP 05 (2021) 036

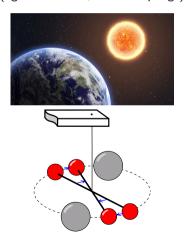
In collaboration with J. Salvado (ICCUB)

Looking for new interactions

Short distances (heavy mediators)

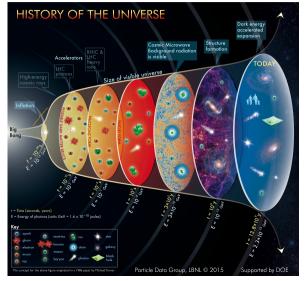


Long distances (light mediators, small couplings)



Introduction

Looking for new interactions: cosmology



In the past, densities were high:

- $lue{}$ Big Bang Nucleosynthesis: $\sim 10^{29}\,\mathrm{cm}^{-3}$
- $lue{}$ Cosmic Microwave Background: $\sim 10^{14}\,\mathrm{cm^{-3}}$

New long-range interactions could have *observational* consequences.

Looking for new interactions: cosmology

■ What are the cosmological consequences of light mediators \iff long-range interactions? How does a long-range interaction affect ρ , p, w..., commonly assumed to follow an ideal gas? *E.g.*, *Van der Waals gas*.

- What are the observational consequences and possible bounds?
 - Cosmic Microwave Background anisotropies
 - Large Scale Structure observations (Baryon Acoustic Oscillations)

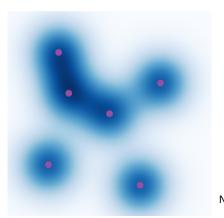
There are many recent works on cosmological consequences of neutrino self-interactions (neutrino mass models, H_0 tension, short baseline anomalies...) (Archidiacono et. al. (2013-2016); Hannestad et. al. (2013); Dasgupta et. al.

(2013); Forastieri et. al. (2019); Kreisch et. al. (2019); Escudero et. al. (2019); Park et. al. (2019); Blinov et. al. (2019); Beacom et. al. (2004).

But these have heavy mediators (they just induce ν - ν scattering), and we are interested in long-range effects.

Yukawa interaction

$$\mathcal{S} = \int \sqrt{-g} d^4x \left(-\frac{1}{2} D_\mu \phi D^\mu \phi - \frac{1}{2} \frac{M_\phi^2}{\phi^2} \phi^2 + i \bar{\nu} \not \! D \nu - \frac{g}{m_0} \bar{\nu} \nu - \frac{g}{\phi} \bar{\nu} \nu \right)$$



- Being a scalar interaction,
 - both neutrinos and antineutrinos equally contribute,
 - both spins equally contribute,
- is suppressed for relativistic neutrinos $(\bar{\nu}\nu = \bar{\nu}_L \nu_R + \bar{\nu}_R \nu_L)$. • Neutrinos will source scalar field ϕ , with

 - strength $\sim g$,
 - range $\sim 1/M_{\phi}$.
- The field will backreact on the neutrinos.
- This will be important for **neutrino energies** $\lesssim m_0$ and **number densities** $\gtrsim M_{\phi}^3$.

N.B.: we will ignore scatterings, a good approximation for $g \lesssim 10^{-7}$.

Equations of motion

$$i\not D
u - (m_0 + g \phi)
u = 0$$
 = Effective Time-dep

Effective neutrino mass $\tilde{m}(\phi) \equiv m_0 + g\phi$. Time-dependent as ϕ evolves.

$$\underbrace{-D_{\mu}D^{\mu}\phi}_{\supset 3H\dot{\phi}} + \underbrace{M_{\phi}^{2}\phi}_{\downarrow} = -g\bar{\nu}\nu$$

Equations of motion

 $i\not D\nu - (m_0 + g\phi)\nu = 0$

Time-dependent as
$$\phi$$
 evolves.

$$\underbrace{-D_{\mu}D^{\mu}\phi}_{3H\dot{\phi}} + M_{\phi}^{2}\phi = -g\bar{\nu}\nu \implies$$

Klein-Gordon equation with Hubble friction and source term. For $M_{\phi}\gg H$ and average rhs over neutrino (+antineutrino) distribution f(p),

$$M_{\phi}^2 \phi = -g \int d^3p \frac{\tilde{m}(\phi)}{\sqrt{p^2 + \tilde{m}(\phi)^2}} f(p)$$

Effective neutrino mass $\tilde{m}(\phi) \equiv m_0 + g\phi$.

N.B.: $M_{\phi} \gg H$ means $M_{\phi} \gtrsim 10^{-25}\,\mathrm{eV}$. I.e., we are exploring interaction ranges $\ll \mathrm{Mpc}$. Otherwise, we recover quintessence.

/ 12

Equations of motion

$$i\rlap/D \nu - (m_0 + g \phi) \nu = 0$$
 \Longrightarrow Effective neutrino mass $\~m(\phi) \equiv m_0 + g \phi$. Time-dependent as ϕ evolves.

Time-dependent as
$$\phi$$
 evolves.

Klein-Gordon equation with *Hubble friction* and **source term**. For $M_0 \gg H$ and average

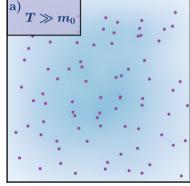
$$\underbrace{-D_{\mu}D^{\mu}\phi}_{\supset 3H\dot{\phi}} + M_{\phi}^{2}\phi = -g\bar{\nu}\nu \implies$$

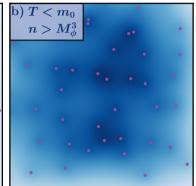
rhs over neutrino (+antineutrino) distribution f(p), $M_{\phi}^2 \phi = -g \int \mathrm{d}^3 p \frac{\tilde{m}(\phi)}{\sqrt{p^2 + \tilde{m}(\phi)^2}} f(p)$

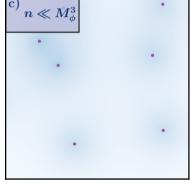
N.B.: $M_{\phi}\gg H$ means $M_{\phi}\gtrsim 10^{-25}\,\mathrm{eV}$. I.e., we are exploring interaction ranges $\ll\mathrm{Mpc}$. Otherwise, we recover quintessence.

Homogeneous background

Pictorial overview



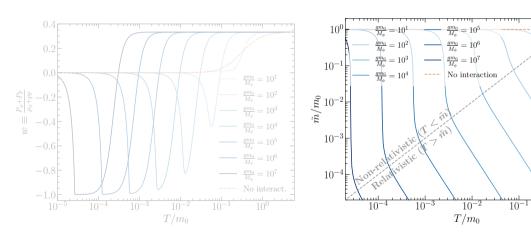




 10^{0}

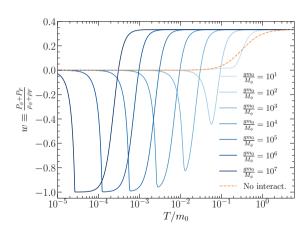
Homogeneous background

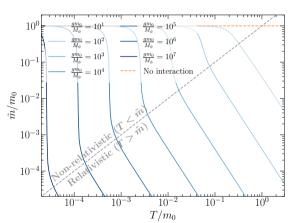
Numerical results



Neutrinos will stay *relativistic* as long as there are many neutrinos within the interaction range.

Homogeneous background





The equation of state $\mathbf{w} \equiv \frac{P}{\rho}$ is relevant as $\frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}t} = -3H(1+\mathbf{w})$ (i.e., how fastly ρ changes)

Observational consequences

/ 1

Let's look for this!

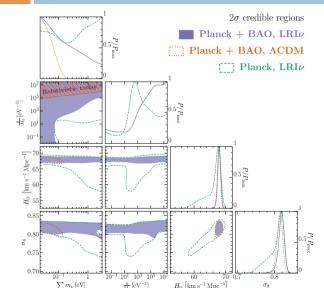
- Neutrinos abundantly exist.
- Self-interactions are poorly constrained.
- They become non-relativistic relatively late.
- Cosmology can provide a measurement of neutrino mass, the energy scale of our first laboratory evidence of BSM physics. Current bounds well beyond KATRIN laboratory sensitivity.

We will assume three degenerate neutrinos of vacuum mass m_{ν} , with a scalar universally coupling to all mass eigenstates.

We will study consequences in

- CMB anisotropies (Planck).
- Large Scale Structure (BAOs + Euclid).

Cosmological constraints



Both BAO and Planck data are quite sensitive to the neutrino equation of state.

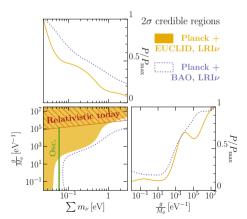
Neutrino mass bound fully avoided.
KATRIN could see something!

Euclid

T. Sprenger et al.. "Cosmology in the era of Euclid and the Square Kilometre Array," arXiv:1801.08331.

Euclid should have $\sim 2-3\sigma$ sensitivity to $\sum m_{\nu} = 0.06 \, \text{eV}$, the smallest value allowed by oscillations.

Scenario 1: Euclid compatible with $\sum m_{\nu} = 0$



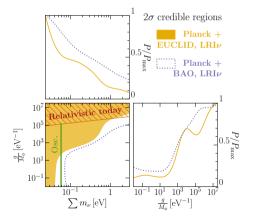
Future: Large Scale Structure

1 / 12

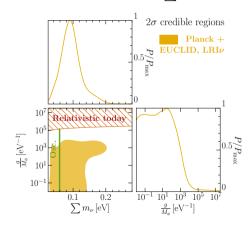
Euclid

Interesting complementarity with KATRIN!

Scenario 1: Euclid compatible with $\sum m_{
u}=0$



Scenario 2: Euclid measures $\sum m_{
u} = 0.08\,\mathrm{eV}$



Conclusions

12 / 12

- We have consistently addressed the cosmological effects of a scalar long range interaction among neutrinos.
- Up to now, studies mostly focused on either
 - Interactions with cosmological ranges: modified gravity.
 - Scattering effects (heavy mediators).

in between, there are \sim 15 orders of magnitude with a very rich phenomenology!

■ The effects turn on at $T \sim m_0$, and can be summarized as

Radiation (even for $T \ll m_0) \Longrightarrow \mathsf{Dark}$ energy $\Longrightarrow \mathsf{Dust}$

relevant for $\frac{gm_0}{M_{ch}} > 1$.

- When analyzing the data:
 - Neutrino mass bound is completely avoided. KATRIN could see something!
 - Planck + BAO constraint $\frac{gm_{
 u}}{M_{\perp}}\gtrsim 10^2(10^4)$ for $\sum m_{
 u}=0.1(1)\,\mathrm{eV}.$
- LSS could be very powerful, and has an interesting complementarity with Katrin & oscillations.
- The formalism could also be applied to other fermions. O github.com/jsalvado/class_public_lrs

Thanks!

Homogeneous background: approximate solutions

We will assume a fermion thermal relic

$$f(p) = \frac{\mathfrak{g}}{(2\pi)^3} \frac{1}{e^{p/T} + 1},$$

for which the scalar field equation can be approximately solved in 2 limits

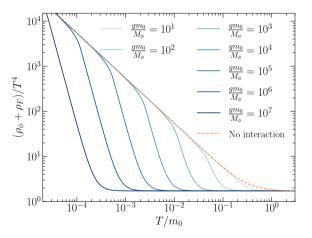
$$T\ll \tilde{m}$$

$$\phi = -\frac{\frac{\mathfrak{g}}{24}g\,T^3\frac{m_0}{T}}{M^2+\frac{\mathfrak{g}}{2}g^2T^2} \quad \text{coupling} \times \text{fermion number density} \times \frac{m_0}{T} \qquad \phi = -\frac{3\zeta(3)\mathfrak{g}}{4\pi^2}g\frac{T^3}{M_4^2}$$

$$\tilde{m} = m_0 \left(1 - \frac{3\zeta(3)\mathfrak{g}}{4\pi^2} \frac{g^2 \mathbf{T}^2}{\mathbf{M}_{\phi}^2} \frac{T}{m_0} \right)$$

$$\tilde{m} = m_0 \frac{1}{1 + \frac{g}{24} \frac{g^2 T^2}{M^2}} \qquad \text{relativistic as long as } T \gg \frac{\pmb{M}_\phi}{\pmb{g}} \sqrt{\frac{m_0}{T}}$$

Energy density



$$ho_\phi = rac{1}{2} M_\phi^2 \phi^2$$
; $ho_F = \int \mathrm{d}^3 p \sqrt{p^2 + ilde{m}^2} \, f(p)$. Notice that $ho \leq
ho_{\mathrm{Nointeraction}}$: Yukawas are attractive.

12 / 13

Perturbation equations & instability

In the Newtonian gauge,

$$f = f_0(q)[1 + \Psi(\vec{q}, \tau, \vec{x})]$$

$$\Psi'_0 = -\frac{qk}{\varepsilon} \Psi_1 - \phi' \frac{\mathrm{d} \log f_0}{\mathrm{d} \log q} ,$$

$$\Psi'_1 = \frac{qk}{3\varepsilon} (\Psi_0 - 2\Psi_2) - \left[\varepsilon\psi + g\delta\phi \frac{\tilde{m}}{\varepsilon} a^2\right] \frac{k}{3q} \frac{\mathrm{d} \log f_0}{\mathrm{d} \log q} ,$$

$$\Psi'_\ell = \frac{qk}{(2\ell+1)\varepsilon} [\ell\Psi_{\ell-1} - (\ell+1)\Psi_{\ell+1}] \quad \forall \ell \geq 2 .$$

$$\phi = \phi_0(\tau) + \delta\phi(\vec{x}, \tau)$$

For $M_{\phi}\gg H$,

$$\delta\phi\simeq\frac{-g\frac{4\pi}{a^2}\int\mathrm{d}q\,q^2\frac{\tilde{m}}{\varepsilon}f_0(q)\Psi_0(\vec{q},\tau,\vec{k})}{(k/a)^2+M_\phi^2+M_T^2}$$

$$M_T^2 \equiv g^2 \int \mathrm{d}^3 p rac{p^2}{[p^2 + \tilde{m}^2]^{3/2}} f_0(p) \,.$$

Perturbation equations & instability

In the Newtonian gauge,

$$f = f_0(q)[1 + \Psi(ec{q}, au,ec{x})] \ \Psi_0' = -rac{qk}{arepsilon}\Psi_1 - \phi'rac{\mathrm{d}\log f_0}{\mathrm{d}\log q} \ , \ \Psi_1' = rac{qk}{3arepsilon}(\Psi_0 - 2\Psi_2) - \left[arepsilon\psi + oldsymbol{g}\delta\phirac{ ilde{m}}{arepsilon}a^2
ight]rac{k}{3q}rac{\mathrm{d}\log f_0}{\mathrm{d}\log q} \ , \ \Psi_\ell' = rac{qk}{(2\ell+1)arepsilon}[\ell\Psi_{\ell-1} - (\ell+1)\Psi_{\ell+1}] \quad orall \ell\geq 2 \ .$$

$$\phi = \phi_0(\tau) + \delta\phi(\vec{x}, \tau)$$

For $M_{\phi}\gg H$,

$$\delta\phi\simeqrac{-grac{4\pi}{a^2}\int\mathrm{d}q\,q^2rac{ ilde{m}}{arepsilon}f_0(q)\Psi_0(ec{q}, au,ec{k})}{(k/a)^2+M_+^2+M_T^2}$$

$$M_T^2 \equiv g^2 \int \mathrm{d}^3 p rac{p^2}{[p^2 + \tilde{m}^2]^{3/2}} f_0(p) \,.$$

N. Afshordi, M. Zaldarriaga and K. Kohri, "On the stability of dark energy with mass-varying neutrinos," Phys. Rev. D 72, 065024 (2005) arXiv:astro-ph/0506663.

See also Bjaelde et al, arXiv:0705.2018; Bean et al, arXiv:0709.1124; Beca and Avelino, arXiv:astro-ph/0507075; Kaplinghat and Rajaraman, arXiv:astro-ph/0601517 ...

There is a new attractive force, stronger than gravity: perturbations at scales $a/k \gtrsim 1/M$ are **unstable**.

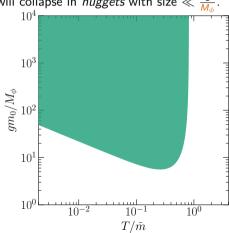
Instability

N. Afshordi, M. Zaldarriaga and K. Kohri, "On the stability of dark energy with mass-varying neutrinos," Phys. Rev. D 72, 065024 (2005) arXiv:astro-ph/0506663.

When they become non-relativistic, in a time $\ll \frac{1}{M_{\phi}}$, fermions will collapse in *nuggets* with size $\ll \frac{1}{M_{\phi}}$.

These will behave as dust, as no scalar field is left out.

We have numerically verified this for a large fraction of parameter space (shaded).



Instability

N. Afshordi, M. Zaldarriaga and K. Kohri, "On the stability of dark energy with mass-varying neutrinos," Phys. Rev. D 72, 065024 (2005) arXiv:astro-ph/0506663.

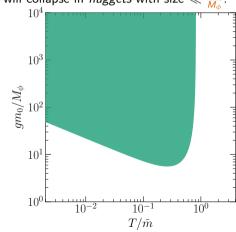
When they become non-relativistic, in a time $\ll \frac{1}{M_{\phi}}$, fermions will collapse in *nuggets* with size $\ll \frac{1}{M_{\phi}}$.

These will behave as dust, as no scalar field is left out.

parameter space (shaded).

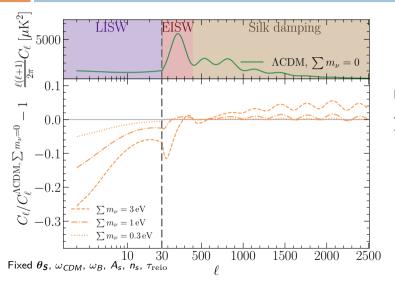
■ We have numerically verified this for a large fraction of

- Nevertheless, as $M_{\phi}\gg H$, the involved scales are much smaller than cosmological scales! As $M_{\phi}\lesssim H$, we recover modified gravity
 - For $m_0 \sim \text{eV}$, $1/M_\phi \sim \text{km} \text{pc} \sim 10^{-6} \, \text{s} \text{year}$
- For the purpose of cosmological observables, we can assume an *instantaneous* transition to dust-like behaviour.



2 / 12

Neutrino masses

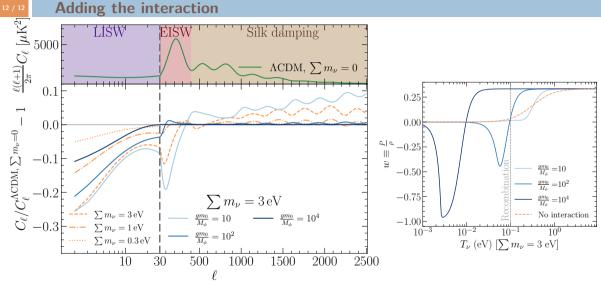


- J. Lesgourgues, G. Mangano, G. Miele,
- S. Pastor, Neutrino Cosmology (2013)

For fixed
$$\theta_S = \frac{\int_{z_{\text{rec}}}^{z_{\text{rec}}} c_s \frac{dz'}{H(z')}}{\int_{0}^{z_{\text{rec}}} \frac{dz'}{H(z')}}$$
,

- $\sum m_
 u
 eq 0$ has 3 main effects:
 - EISW, which directly tests the equation of state.
 - To keep θ_S fixed, H_0 decreases $\Rightarrow \Omega_\Lambda$ decreases \Rightarrow less LISW.

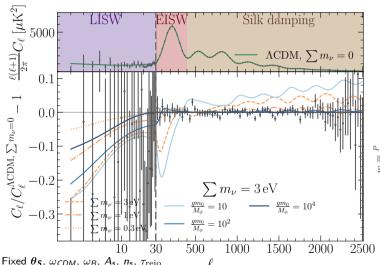
$$\theta_D \sim \frac{\sqrt{\int_{z_{\rm rec}}^{\infty} \frac{1}{an_e\sigma_T} \frac{\mathrm{d}z'}{H(z')}}}{\int_{0}^{z_{\rm rec}} \frac{\mathrm{d}z'}{H(z')}}$$



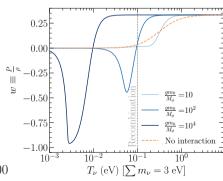
Fixed θ_{S} , ω_{CDM} , ω_{B} , A_{s} , n_{s} , τ_{reio}

12 / 12

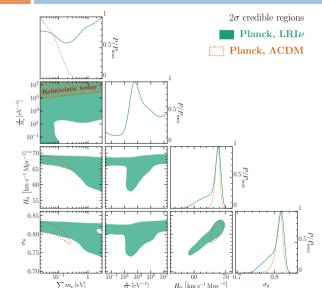
Data



The Planck constraint will be essentially behave like radiation for $T > T_{\rm rec}$.



Backup: results from Planck



All the allowed region has essentially the same behavior before recombination: neutrinos with w=1/3.

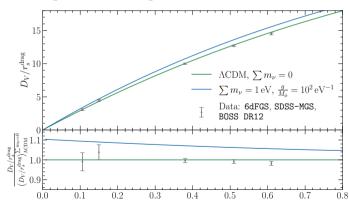
Backup: BAO constraints

Ivan Esteban, Ohio State University
arXiv:2101.05804

1/12 Data

BAO approximately measure

$$\frac{\int_{z_{\rm drag}}^{\infty} c_s \frac{\mathrm{d}z'}{H(z')}}{\left[\frac{z}{H(z)} \left(\int_0^z \frac{\mathrm{d}z'}{H(z')}\right)^2\right]^{1/3}}, \text{ sensitive to late-time evolution of } H, \text{ i.e., to } \rho.$$



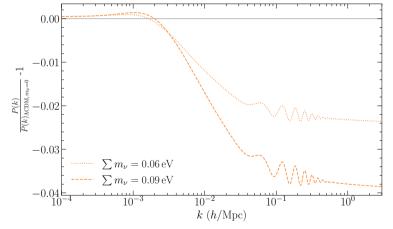
Fixed θ_{S} , ω_{CDM} , ω_{B} , A_{s} , n_{s} , τ_{reio}

Future: Large Scale Structure

As we have seen, late-time probes can efficiently explore neutrino long-range interactions.

- This decade, we expect precise LSS probes of the matter power spectrum!
- L. Amendola et al. [Euclid Theory WG], "Cosmology and fundamental physics with the Euclid satellite," arXiv:1606.00180.
 - R. Maartens et al. [SKA Cosmology SWG], "Overview of Cosmology with the SKA," arXiv:1501.04076.
 - J. Pritchard et al. [Cosmology-SWG and EoR/CD-SWG], "Cosmology from EoR/Cosmic Dawn with the SKA," arXiv:1501.04291.
 - P. A. Abell et al. [LSST Science and LSST Project], "LSST Science Book, Version 2.0," arXiv:0912.0201.
 - T. Sprenger et al., "Cosmology in the era of Euclid and the Square Kilometre Array," arXiv:1801.08331.

Impact on matter power spectrum



 $\sum m_{\nu} \neq 0$ has two main effects:

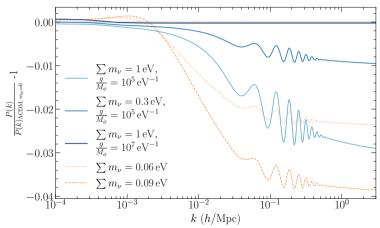
- In Small enhancement at $k \sim 10^{-3} \ h/{\rm Mpc}$, due to clustering.
 - Suppression at large k, as for w < 1/3 neutrinos redshift slower and contribute more to Hubble friction.

Sensitive to energy density in neutrinos and **equation of state**!

Fixed Ω_M , ω_{CDM} , ω_B , A_s , n_s , $\tau_{\rm reio}$. z=0.

12 / 12 | In

Impact on matter power spectrum



 $\sum m_{\nu} \neq 0$ has two main effects:

- I Small enhancement at $k \sim 10^{-3} \ h/{\rm Mpc}$, due to clustering.
 - Suppression at large k, as for w < 1/3 neutrinos redshift slower and contribute more to Hubble friction.

Sensitive to energy density in neutrinos and **equation of state!**

Fixed Ω_M , ω_{CDM} , ω_B , A_s , n_s , $\tau_{\rm reio}$. z=0.