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Looking for new interactions: cosmology
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New long-range interactions could have
observational consequences.
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Looking for new interactions: cosmology

What are the cosmological consequences of light mediators <=> long-range interactions?
How does a long-range interaction affect p, p, w..., commonly assumed to follow an ideal gas?
E.g., Van der Waals gas.

What are the observational consequences and possible bounds?
Cosmic Microwave Background anisotropies
Large Scale Structure observations (Baryon Acoustic Oscillations)

There are many recent works on cosmological consequences of neutrino self-interactions (neutrino
mass models, Hp tension, short baseline anomalies. .. ) (Archidiacono et. al. (2013-2016); Hannestad et. al. (2013); Dasgupta et. al.
(2013); Forastieri et. al. (2019); Kreisch et. al. (2019); Escudero et. al. (2019); Park et. al. (2019); Blinov et. al. (2019); Beacom et. al. (2004).

But these have heavy mediators (they just induce v-v scattering), and we are interested in
long-range effects.
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Yukawa interaction
4 1 1 5,0 . _ _
S= [ +—gd*x —EDﬂtﬁD"(ﬁ— EM@‘ﬁ + ivDv — mypv — gopv

m Being a scalar interaction,

® both neutrinos and antineutrinos equally contribute,
® both spins equally contribute,
© is suppressed for relativistic neutrinos (Dv = U[vg + UgyL).

m Neutrinos will source scalar field ¢, with
® strength ~ g,
® range ~ 1/ M.

= The field will backreact on the neutrinos.

= This will be important for neutrino energies < mp and
number densities > M3

N.B.: we will ignore scatterings, a good approximation for g < 10~7.
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U0 Equations of motion

ibv — (my+gop)r =0 ———=  Effective neutrino mass m(¢) = mg + g¢.
Time-dependent as ¢ evolves.

—D, D" ¢ + 2 h= —

S3Hé
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Equations of motion

iPv —(mo+gop)r =0 ———  Effective neutrino mass m(¢) = my + go.
Time-dependent as ¢ evolves.

—~D,D"¢+M? ¢p= —girv === Klein-Gordon equation with Hubble friction
——
S3H and source term. For M, > H and average
rhs over neutrino (4antineutrino) distribution f(p),

25— o [ g3 &)
M5 = g/d p\/mf(p)

N.B.: My > H means M, > 102 €V. l.e., we are exploring interaction ranges < Mpc. Otherwise, we recover
quintessence.
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Equations of motion

iPv —(mo+gop)r =0 ———=>  Effective neutrino mass | m(¢) = mo + g¢ |.

Time-dependent as ¢ evolves.

-D,D"¢ +Mf)(b: —gvv =——=  Klein-Gordon equation with Hubble friction
——
S3H and source term. For M, > H and average
rhs over neutrino (4antineutrino) distribution f(p),

()
VP2 + in()?

N.B.: My > H means M, > 102 €V. l.e., we are exploring interaction ranges < Mpc. Otherwise, we recover
quintessence.

Mg =—g [ d®p f(p)
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Pictorial overview
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Homogeneous background
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Neutrinos will stay relativistic as long as there are many neutrinos within the interaction range.
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The equation of state w = % is relevant as %d—‘t’ = —3H(1 + w) (i.e., how fastly p changes)
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Let’s look for this!

Neutrinos abundantly exist.
Self-interactions are poorly constrained.
They become non-relativistic relatively late.

Cosmology can provide a measurement of neutrino mass, the energy scale of our first laboratory
evidence of BSM physics. Current bounds well beyond KATRIN laboratory sensitivity.

We will assume three degenerate neutrinos of vacuum mass m,,, with a scalar universally coupling to all
mass eigenstates.

We will study consequences in
CMB anisotropies (Planck).
Large Scale Structure (BAOs + Euclid).
CLASS + MontePython: () github.com/jsalvado/class_public_lrs
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1 ? » Both BAO and Planck data are quite
sensitive to the neutrino equation of state.

= Neutrino mass bound fully avoided.
0 KATRIN could see something!
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Future: Large Scale Structure Rive2101 0580
Euclid

T. Sprenger et al., “Cosmology in the era of Euclid and the Square Kilometre Array,” arXiv:1801.08331.
Euclid should have ~ 2-3¢ sensitivity to > m, = 0.06 €V, the smallest value allowed by oscillations.

Scenario 1: Euclid compatible with >~ m, =0
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Future: Large Scale Structure o BN, oo
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Interesting complementarity with KATRIN!

Scenario 1: Euclid compatible with > m, =0  Scenario 2: Euclid measures > m, = 0.08 ¢V
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We have consistently addressed the cosmological effects of a scalar long range interaction among
neutrinos.
Up to now, studies mostly focused on either

Interactions with cosmological ranges: modified gravity.
Scattering effects (heavy mediators).

in between, there are ~ 15 orders of magnitude with a very rich phenomenology!
The effects turn on at T ~ mg, and can be summarized as

Radiation (even for T < mg) = Dark energy =-Dust
relevant for gM—":’ > 1.

When analyzing the data:

Neutrino mass bound is completely avoided. KATRIN could see something!
Planck + BAO constraint £7v > 10%(10*) for >" m, = 0.1(1)eV.

LSS could be very powerful, and has an interesting complementarity with Katrin & oscillations.

The formalism could also be applied to other fermions. ©) github. con/jsalvado/class_public_lrs


github.com/jsalvado/class_public_lrs

T hanks!
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Homogeneous background: approximate solutions

We will assume a fermion thermal relic

_ 9 1
f(p) - (27‘(’)3 eP/T + 1 9

for which the scalar field equation can be approximately solved in 2 limits

T>m
8 ,T3m
248 T . . . mo
=——2 _ ~ coupling x fermion number density x —
¢ M2+ Zg2T2 ping X7
—+ effective scalar mass

1 M m,
m=my———= relativistic as long as T > ¢ [T
1+ £E7 T

2
Mg,
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Perturbation equations & instability

In the Newtonian gauge,

f =f(q)[l +V(d,7,X)] ¢ = ¢o(1) + d9(X, 7)
p dlog £ For My > H,
\Uf):—q—\lll—ﬁﬂ, L
€ dlog g 56 —giz = quq B £(q)Vo(G, 7, k)
,_ gk m ,| k dlogf - (k/a)> VR R
—2W5) — op—a°| — ® T
\Ul 3 (WO 2) |:€L +8 ¢ :| 3q d IOg q ’
gk 2 _ 2 3 p°
AT, LA — - >2. M :g/dpffo(p)
\UZ (25 n 1) [Z\Ug 1 (6 + 1)W@+1] Ve > 2 T [P+ m2]3/2



Backup

Perturbation equations & instability

In the Newtonian gauge,

f= ﬁ)(q)[l + \U(Ei7 7, )?)]

k dlog fy
v o— 9Ky, _ y4lo8T0
0 e ! ¢d|ogq’

k | M ] k dlogf
v = Ly, — 2w b+ gdhma?| -
1 3(0 2) — {€L+g¢sa}3qdlogq’

gk
/
_ > 2.

Vv, = 20+1) [(Wey — (04 1)Wppa] V=2

N. Afshordi, M. Zaldarriaga and K. Kohri, *
(2005) arXiv:astro-ph/0506663.
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QI) = d)O(T) + 5¢()?a T)
For My > H,

—g%2 [ dq *21f(q)Wo(d, T, k)
(k/a)? + M2 + M3

2
2 _ 2 3 P
Mr=¢ /d Pl e PP)

¢ ~

, “On the stability of dark energy with mass-varying neutrinos,” Phys. Rev. D 72, 065024

See also Bjaelde et al, arXiv:0705.2018; Bean et al, arXiv:0709.1124; Beca and Avelino, arXiv:astro-ph/0507075; Kaplinghat and Rajaraman, arXiv:astro-ph/0601517 ...

There is a new attractive force, stronger than gravity: perturbations at scales a/k = 1/M are unstable.
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N. Afshordi, M. Zaldarriaga and K. Kohri, “On the stability of dark energy with mass-varying neutrinos,” Phys. Rev. D 72, 065024
(2005) arXiv:astro-ph/0506663.

When they become non-relativistic, in a time < M , fermions will coIIapse in nuggets with size < -

These will behave as dust, as no scalar field is left out. 10*

m We have numerically verified this for a large fraction of
parameter space (shaded).

Ll MR | MR | P
1072 1071 10°
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N. Afshordi, M. Zaldarriaga and K. Kohri, “On the stability of dark energy with mass-varying neutrinos,” Phys. Rev. D 72, 065024
(2005) arXiv:astro-ph/0506663.

When they become non-relativistic, in a time < M , fermions will coIIapse in nuggets with size < -

These will behave as dust, as no scalar field is left out. 10*

m We have numerically verified this for a large fraction of
parameter space (shaded).

smaller than cosmological scales!
As My < H, we recover modified gravity

=
= Nevertheless, as My > H, the involved scales are much 5
g
>

For mp ~ eV, 1/Mg ~ km — pc ~ 107%s — year

m For the purpose of cosmological observables, we can
assume an instantaneous transition to dust-like behaviour.
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Neutrino masses
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Data
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Backup: results from Planck
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All the allowed region has essentially the same
behavior before recombination: neutrinos with
w=1/3.
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Future: Large Scale Structure

As we have seen, late-time probes can efficiently explore neutrino long-range interactions.

This decade, we expect precise LSS probes of the matter power spectrum!

L. Amendola et al. [Euclid Theory WG], “Cosmology and fundamental physics with the Euclid satellite,” arXiv:1606.00180.

R. Maartens et al. [SKA Cosmology SWG]|, “Overview of Cosmology with the SKA,” arXiv:1501.04076.

J. Pritchard et al. [Cosmology-SWG and EoR/CD-SWG], “Cosmology from EoR/Cosmic Dawn with the SKA,” arXiv:1501.04291.
P.A. Abell et al. [LSST Science and LSST Project], “LSST Science Book, Version 2.0,” arXiv:0912.0201.

T. Sprenger et al., “*Cosmology in the era of Euclid and the Square Kilometre Array,” arXiv:1801.08331.
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Impact on matter power spectrum
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> m, # 0 has two main effects:

Small enhancement at
k ~ 1073 h/Mpc, due to
clustering.

Suppression at large k, as for
w < 1/3 neutrinos redshift
slower and contribute more to
Hubble friction.

Sensitive to energy density in
neutrinos and equation of state!
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Impact on matter power spectrum
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