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Physics motivations

* Studying neutrinos in unexplored energy regime (TeV energies)

— Neutrinos from the LHC
» First detection of collider neutrinos
» High energy frontier of man-made neutrinos

— Cross section measurements of different flavors at high energy
— Probing neutrino-related models of new physics
— From the other perspective, measurements of forward particle production

Existing measurementsI of vN CC cross sections and the expected energy spectra for FASERv
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The FASER experiment

» FASER is a small and fast experiment at the LHC.
— Will take data in the LHC Run-3 (2022-2024).

«  FASER (new particle searches) approved by CERN in Mar. 2019. FASER main Gl

: A into the TI12 tunnel (N
— Targeting light, weakly-coupled new particles at low py. S
— Funded by the Heising-Simons and Simons Foundations with support from CERN. FASER talk by Di Wang (on 29th, T10) and
- FASERv (neutrino measurements) approved by CERN in Dec. 2019. posters by Deion Fellers, Ondrej Theiner

— First measurements of neutrinos from a collider and in unexplored energy regime.
— Funded by the Heising-Simons Foundation, ERC, JSPS and the Mitsubishi Foundation.
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FASERv physics potential:
high-energy neutrino interactions

* Primary goal: cross section measurements of different flavors
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* Neutrino CC interaction with charm production (vs—Ic)
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— Study the strange quark content.
— Probe inconsistency between the predictions and the LHC data
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.056014

FASERv physics potential:
BSM physics

* If SM uncertainties are under control, there is additional potential for
BSM physics searches.

* The tau neutrino flux is small in SM.
A new light weakly coupled gauge bosons decaying into tau neutrinos
could significantly enhance the tau neutrino flux.
—  F.Kling, Phys. Rev. D 102, 015007 (2020), arXiv:2005.03594

«  SM neutrino oscillations are expected to be negligible at FASERv.
However, sterile neutrinos with mass ~40 eV can cause oscillations.
FASERv could act as a short-baseline neutrino experiment.

—  FASER Collaboration, Eur. Phys. J. C 80 (2020) 61, arXiv:1908.02310
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forward particle production | e
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« Neutrinos produced in the forward direction at the LHC originate . nosn
from the decay of hadrons, mainly pions, kaons, and charm particles. =
€ | FASERv:7>8.8 Lic oy
. . . . E 1
» Forward particle production is poorly constrained by other LHC 2 104
experiments. ] oy .: LNC: D
« FASERv’s measurements provide novel input to validate/improve 100}”’7"""-"'”
generators.
— First data on forward kaon, hyperon, charm
* Neutrinos from charm decay could allow to
— test transition to small-x factorization, see effects of gluon saturation, 10-4 .
constrain low-x gluon PDF, probe intrinsic charm. o
. I?E 107 4
« Relevant for neutrino telescopes (such as IceCube). T
— In order for IceCube to make precise measurements of the cosmic E
neutrino flux, accelerator measurements of high energy and large rapidity 3 107 4
charm production are needed. .
— As 7+7 TeV p-p collision corresponds to 100 PeV proton interaction in z
fixed target mode, a direct measurement of the prompt neutrino }
production would provide important basic data for current and future 10
high-energy neutrino telescopes. prompt atmospheric

neutrinos
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The FASERv detector for LHC Run-3

Emulsion/tungsten detector,
interface silicon tracker, and veto
station will be placed in front of
the FASER main detector.

Allow to distinguish all flavor of
neutrino interactions.
— Muon identification by their track

length in the detector (81;,,;) -—
— Muon Charge identification with FASER spectrometer
hybrid configuration - with 0.55T magnets -
distinguishing v, and v, Interface silicon tracker < ' X
— Neutrino energy measurement Veto
with ANN by combining station

topological and kinematical e
i -é o 1T Emulsion/tungsten detector
variables Ve =3 Vy > -< Vy-> g
« 770 1T-mm-thick tungsten plates,
A X interleaved with emulsion films

Emulsion film Tungsten plate (1Tmm thick) * 25x30 cm? 1.1 mlong, 1.1 tons
detector (220X,)




Neutrinos interacting with detector [1/bin]

Expected neutrino event rate in LHC Run-3

A high-intensity beam of neutrinos will

be produced in the far-forward direction.

FASERv will be centered on the LOS (in
the FASER trench) to maximizes fluxes of
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https://arxiv.org/abs/2105.08270

Pilot run in 2018 (LHC Run-2) Aiming to demg

nstrate n i :
for the first time €utrino detection at the LHC

. ~30 kg detector

J16 \UX15 -
FASERv g‘”‘“s

pilot run ATLAS FASER/FASERY

« Aims: charged particle flux measurement and neutrino detection
*  We performed measurements in the tunnels TI18 and T112, 480 m from the ATLAS IP.
« For neutrino detection, a 30 kg emulsion detector was installed in TI18 and 12.2 fb-! data was collected.



Neutrino interaction candidates

First neutrino interaction candidates

at the LHC,

UCI-TR-2021-04, KYUSHU-RCAPP-202

First neutrino interaction candidates at the LHC
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https://arxiv.org/abs/2105.06197

Background estimation

« The pilot detector lacked the ability to identify
muons given its depth of only 0.64;,,;, much shorter
than the 841;,,; of the full FASERv detector.

« -> Separation from neutral hadron BG (produced by
muons) is much harder than the physics run.

* Muons rarely produce neutral hadrons in upstream
rock, which can mimic neutrino interaction vertices.

* The produced neutral hadrons are low energy >
discriminate by vertex topology.

The production rates of neutral hadrons per incident muon

Negative Muons Positive Muons
Ky 33x107° 9.4 x 107"
Ks 8.0 x 1078 2.3 x 1078
n 2.6 x 1075 7.7 x 1078
i 1.1 x10°° 32 %1078
A 3.5 x 1078 1.8 x 10~¢
A 2.8 x 1078 8.7 x 1077

First neutrino interaction candidates
at the LHC, arXiv:2105.06197
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https://arxiv.org/abs/2105.06197

Variables for the BDT analysis

5 variables used in the analysis

1.

First neutrino interaction candidates
at the LHC, arXiv:2105.06197

Concepts

* The neutrino energy is higher than the neutral hadron energy. Higher
energy, more particles are produced in forward direction, i.e.
tan(theta)<0.1. = variable 1, 2

« Momentum in the transverse plane is more balanced in hadron
interactions than neutrino CC and NC interactions. Outgoing leptons in
neutrino interactions take a major energy, which distorts this variable.
- variable 3

« For CC interactions, we expect the outgoing lepton and hadron system
are back to back in the transverse plane. - variable 4, 5
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First neutrino interaction candidates
at the LHC, arXiv:2105.06197

Results
* Analyzed target mass 11 kg Best fit (no Ny constraint)
£ 5§ e FASER data (18 ev)
. 0>34.5_—
* 18 neutral vertices were selected 3 ,E I vcutrino signal (6.1 ev, best it
o c
— by applying # of charged particle > 5, etc. 835 background (11.9 ev, best fit
— Expected signal 3.373:7 events, BG 11.0 events é 3 +
25
: : : : IS
« Inthe BDT analysis, an excess of neutrino signal is observed. e
Statistical significance 2.7¢ from null hypothesis £
0.5E
« This result demonstrates detection of neutrinos at the LHC. 0™ 4

BDT output-

We are currently preparing for data taking in LHC Run-3.
With a deeper detector and lepton identification capability, FASERv will perform better than this pilot detector.
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FASERV/FASERv2 schedule

LHC HL-LHC

LS1 EYETS LS2 13- 14 TeV 14 TeV

13 TeV energy
Diodes Consolidation
splice consolidation cryolimit LIU Installation o
7 TeV 8 TeV button collimators interaction inner triplet ML
—— R2E profect regions Civil Eng. P1-P5 radiation fimit installation

oo |z | oo | ons 2y | zmes | ames | awes | o IIIIIIM

5 to 7.5 x nominal Lumi

ATLAS - CMS /———*‘4
experiment upgrade phase 1 ATLAS - CMS

DA fhn S Sy 2 x noghinal Lumi ALICE - LHCb A 2 x nominal Lumi HL upgrade

i

75% nominal Lumi /—' upgrade
: integrated EANUURI S
3o 190 b EXE uminosty R

FASERv pilot run in 2018 FASERv physics run will start in 2022 FASERv2 in HL-LHC

First neutrino interaction Cross section measurements of Precision v, measurements and
candidates at the LHC, different flavors at TeV energies heavy flavor physics studies
arXiv:2105.06197
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Preparation towards LHC Run-3

The TI12 area

\‘\‘ s ? :-“_ . s ; ) S ” AL 2 | X R
8 Trench to install y W — | o FASERv will come
the detectors 1 =

Needed digging to center \‘

FASER/FASERv on the LOS [} .
#  FASER spectrometer
= with 0.55T magnets

~w

1 eter
o W IR O M

The FASER main detector was successfully installed into the TI12 tunnel in March 2021.
Acknowledge great support from many CERN teams involved in the work

B
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Emulsion detector preparation

« Emulsion gel and film production facilities in Nagoya have been set up in 2020.
»  We are testing mass production of the gel and films, and conducting tests of the produced films with cosmic rays.

Film production
facility

17



Interface tracker (IFT) and veto system

* IFT will use the same design as the tracker station in the FASER
spectrometer.
— Silicon strip detector with ATLAS SCT barrel modules
* 80 um strip pitch, 40 mrad stereo angle
» Position resolutions are ~17 um and ~ 580 um in the 2 coordinates

— The electrical qualification as well as assembly of the planes/station
was completed.

— The test beam is ongoing at the H2 beamline in the CERN SPS
North Area.

* Veto station consists of two 2-cm scintillators and WLS (Wave
Length Shifting) bars with two PMTs.
— The PMTs were tested.

— The scintillators have been assembled and are under test with
CcOsmic rays.

ml - -l
-~ FASER tracker station | &£

Veto dimension 30x35 cm?

PMT (H11934-300)

18



The new FPF facility and FASERv?2

Non-CERN land == == I - The Forward Physics Facility (FPF) for the HL-LHC is a
I + T Pt proposed facility that could house a suite of experiments
ATLAS P G to greatly enhance the LHC’s physics potential for
' oy BSM physics searches, neutrino physics and QCD.
— The background muon rate may be able to be reduced with
a sweeper magnet (studies ongoing).
 FASERv2 is designed to carry out precision v,
measurements and heavy flavor physics studies

— ~2300 (SIBYLL) / ~20000 (DPMJET) v, interactions are
expected.

g

“CERN land

e

SHAFT
ST1395418_01

CAVERN
ST1395416_01

ACCESS TUNNEL
ST1395417_01 3 D v i ew

40 cm x 40 cm



Summary and prospects

» FASERv at the CERN LHC is designed to directly detect collider neutrinos for the first time and study their
properties at TeV energies.

*  We have detected first neutrino interaction candidates at the LHC in the 2018 pilot run data.
— arXiv:2105.06197

«  We expect to collect ~10000 CC interactions (distinguishing the flavors) in LHC-Run3 (2022-2024). Preparation for
the data taking is in progress.

* Also planning neutrino measurements in the HL-LHC era.
— Alarge detector for precision v; physics with 20 tons of target

20


https://arxiv.org/abs/2105.06197

Thank you for your attention
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ATLAS interaction point

The FASER main detector

Technical proposal: FASER,
CERN-LHCC-2018-036 ; LHCC-P-013

FASER's physics reach for long-lived particles,
Phys. Rev. D 99, 095011

pp 2 LLP + X, LLP travels ~480 m, LLP - e*e’, p*y, ...

TAN D2 P Insertion | Arc o
" Tt I::::I:::F{'\SEan-
100 200 300 400 {500  L[m
. . Scinti.  0.55T magnet Scinti. 0.55T magnet 0.55T magnet  Scinti.
Signal signature — —
A’ D*ecayllng to
e’ e pair
_____________ >
Decay volume Tracker Tracker Tracker Calorimeter

Incoming
particles

The detector consists of:

Scintillator veto

1.5 m long decay volume
2 m long spectrometer
EM calorimeter
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Emulsion readout systems

* HTS-1 is under operation for several experiments.
* HTS-2 is under development.
* HTS-2 concept

— Very large field of view: 9 x 5.5 mm2 (x2 cf. HTS-1)

— Quick and continuous stage using the linear motors (good transfer characteristic)
and counter stage.

— GPGPU based image processing: <30 ms @tanf<1.6 (total 72 Geforce RTX2080 will
be used.)

| e
The total image transfer |
rate is 48 Ghytes/s

Obijective lens
= > -
I Ul e——HINEE

S X
‘\

Under operating for ) S
+ NINJA (J-PARC) | T
+ NA65/DsTau (CERN) [ > | a
« FASERv (CERN)  stage B3 S
e
«y

1+ GRAINE (Balloon)
* Radiography

Il

S-UTS
HTS-1
HTS-2

Start Field of Readout

year | view (mm?) speed
(cm?/h/layer)

2006 0.04 72

2015 25 4500

2021 50 25000

Readout time for FASERv
(1 replacement = 50 m? x2layers)

~3 months with HTS-1 (using ~5 hours/day)
Would be faster with HTS-2

24



Physics potential: neutrino scattering

*  Primary goal: measurement of the total DIS neutrino scattering cross section
at TeV energies

«  FASERv can also measure differential distributions.

— DISvariables: x, y, Q% and lepton charge
2
. D iA=2)
«  This can be used to probe PDFs. %m i1z
—  Similar to NuTeV and CHORUS measurements but extended to higher energy. 3 b (A=208)
— Allows to probe higher Q% and lower x. f—i 5
— The potential to measure PDF via neutrino scattering is currently being investigated. 2 3
[Arakawa, Kling, Smith, Tait, Valli] % 2]
=
«  Probe nuclear effects: fo- | 1
— shadowing, anti-shadowing and EMC s Momentum Fraction x ,
ol Tome e |
«  Strange quark contentusingvs - lc 12| —— nCTEQ15 anti—shadowingj
— IFT allows to separate strange/anti-strange. = \.
—  Probe inconsistency between DIS and LHC data. [ATLAS: 1612.03016] il > |
é 09 W
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0.7
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Physics potential: neutrino production

Muon Neutrine (FASER)

pp— 7 at /5 = 7TeV for 0.0 < prlGeV/c] <02

-
=]
W

*  Forward particle production is poorly constrained by
other LHC experiments.

*  FASERv’'s measurements provide novel input to
validate/improve generators.

»  First data on forward kaon, hyperon, charm

* A Pythia tune is currently being developed which includes
all available forward data from LHCf, LHCb, TOTEM. [Fieg,

-
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Neutrinos interacting with detector [1/bin]

o
o
=]
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Kling, Schulz]

*  Relevant for muon problem in CR physics:

CR experiments reported an excess in the number of muons
over expectations computed using extrapolations of hadronic
interaction models tuned to LHC data at the few o level.

*  New input from LHC is crucial to reproduce CR data
consistently.

*  Goal: understand composition/origin of CR
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Physics potential: forward charm

«  Electron neutrinos at high energy and tau neutrinos are mainly produced in
charm decays.
*  Neutrinos from charm decay could allow to
— test transition to small-x factorization.
— see effects of gluon saturation.
— constrain low-x gluon PDF.
—  probe intrinsic charm.

»  Relevant for neutrino telescopes (such as IceCube).
— Direct measurements of forward charm production will also help to constrain the flux

prompt atmospheric neutrinos at lceCube and improve cosmic neutrino measurements.
A calculation of forward charm production at the LHC using BFKL resummation

and including gluon saturation is currently being performed. [Bhattacharya, Kling,

Sarcevic, Stasto]

xg(x,Q), comparison
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Physics potential: BSM physics (1)

e If SM uncertainties are under control, there is

additional potential for BSM physics searches.

*  The tau neutrino flux is small in SM.
A new light weakly coupled gauge bosons
decaying into tau neutrinos could

significantly enhance the tau neutrino flux.
[Kling 2005.03594]
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SM neutrino oscillations are expected to be negligible at
FASERv. However, sterile neutrinos with mass ~40 eV can
cause oscillations. FASERv could act as a short-baseline
neutrino experiment. [FASER collaboration1908.02310]

, . Am2,L
P(va — va) = 1 — 4|Una (1 — |Una?) sin? Z‘E‘ ,

. o Am3 L
P(v, — vg) = sin® 20,4 sin® =
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Physics potential: BSM physics (2) Lo

10°®
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{ 10710
« If DM is light, the LHC can produce an energetic and collimated % ; ’,
DM beam towards FASERv. FASERv could therefore also search for oL gt prA Mot
DM scattering. [Batell, Feng, Trojanowski 21071.10338] n FASER
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Heavy-flavor-associated channels

o
o
o

*  Measure charm production channels .
— Study of quark mixing and QCD N
— Large rate ~10% of v CC events gow |
o(wN > (X.+X) 3 il

o(eN — ( + X)

g(vyN-ocuX)+a(vy,N->cpuX)
ag(vyN=>pX)+o(v,N->pX)

10 102 10°
Neutrino Energy E, [GeV]

« Search for Beauty production channels

— Probe “flavor anomaly” suggested by collider experiments
— Expected standard model events (v, CC b production) are 0(0.1) events in Run 3, due to CKM suppression, V3, = 107>

B decays v CC b productions Topology seen by detector
b i TrilinE X
=i o LR s _ —
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