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Neutrino Oscillations
• Oscillation probabilities depends on:

• The neutrino energy

• The travelled distance (“baseline”)

• The difference in masses of 𝜈1, 𝜈2, 𝜈3
• The PMNS mixing parameters 
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Neutrino Oscillations

From reactor experiments 

(e.g. Daya Bay) and from 
measuring 𝑃(𝜈𝜇 → 𝜈𝑒)

Measuring 
𝑃(𝜈𝜇 → 𝜈𝜇)

• One CP-Violating phase: 𝛿𝐶𝑃• Three mixing angles: 𝜃12, 𝜃13, 𝜃23

• Oscillation probabilities depends on:

• The neutrino energy

• The travelled distance (“baseline”)

• The difference in masses of 𝜈1, 𝜈2, 𝜈3
• The PMNS mixing parameters 
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Neutrino Oscillations

From reactor experiments 

(e.g. Daya Bay) and from 
measuring 𝑃(𝜈𝜇 → 𝜈𝑒)

Measuring 
𝑃(𝜈𝜇 → 𝜈𝜇)

• One CP-Violating phase: 𝛿𝐶𝑃

Required to have an imbalance 
between neutrino and anti-
neutrino vacuum oscillations 

• Three mixing angles: 𝜃12, 𝜃13, 𝜃23

• Oscillation probabilities depends on:

• The neutrino energy

• The travelled distance (“baseline”)

• The difference in masses of 𝜈1, 𝜈2, 𝜈3
• The PMNS mixing parameters 
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The T2K Experiment

Muon
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Muon
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The T2K Experiment

Muon

Produce predominantly 𝜈𝜇
neutrino or anti-neutrino beam  
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The T2K Experiment

Muon

Near Detector

ND280
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The T2K Experiment

Muon

Near Detector

ND280

𝑁𝜇 𝐸𝜈 = 𝜎 𝐸𝜈 Φ𝜈 𝐸𝜈 𝜖(𝐸𝜈)

Interaction 
cross section

Neutrino flux

Detector 

effects
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The T2K Experiment

Muon

Far Detector

Super-Kamiokande
Near Detector

ND280
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The T2K Experiment

Muon

Far Detector

Super-Kamiokande
Near Detector

ND280
𝑁𝜇 𝐸𝜈 = 𝑃(𝜈𝜇 → 𝜈𝜇)𝜎 𝐸𝜈 Φ𝜈 𝐸𝜈 𝜖(𝐸𝜈)

Oscillation 
probability

𝑁𝑒 𝐸𝜈 = 𝑃(𝜈𝜇 → 𝜈𝑒)𝜎 𝐸𝜈 Φ𝜈 𝐸𝜈 𝜖(𝐸𝜈)

𝛿𝐶𝑃 𝜃13
𝜃23Δ𝑚32

2

PMNS Mixing
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Neutrino Interactions

No Osc.

w/Osc.

CC-2p2h

CC-SPP
(Single Pion Production)

CC-QE
(2 particle, 2 hole)(Charged-Current Quasi-Elastic)

𝑁ℓ 𝐸𝜈 = 𝑃 𝜈𝜇 → 𝜈ℓ 𝐸𝜈 𝜎 𝐸𝜈 Φ𝜈 𝐸𝜈 𝜖(𝐸𝜈)

𝑁ℓ(E𝜈) = Event rate
𝑃 𝜈ℓ′ → 𝜈ℓ 𝐸𝜈 = Oscillation probability

Φ𝜈(E𝜈) = Neutrino flux

𝜖 𝐸𝜈 = Detector efficiency
𝜎ℓ 𝐸𝜈 = Interaction cross section
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Neutrino Interactions

No Osc.

w/Osc. 

CC-QE
(Charged-Current Quasi-Elastic)

CC-2p2h

CC-SPP
(Single Pion Production)

(2 particle, 2 hole)
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Neutrino Interactions

No Osc.

w/Osc. 

CC-QE

Assuming CCQE 

scattering off a 

stationary nucleon, 
reconstruct 𝐸𝜈 from 

the observed lepton:

(Charged-Current Quasi-Elastic)

Isolate CCQE events by looking for 
meson-less interactions (“CC0π”)

𝑁ℓ 𝐸𝜈 = 𝑃 𝜈𝜇 → 𝜈ℓ 𝐸𝜈 𝜎 𝐸𝜈 Φ𝜈 𝐸𝜈 𝜖(𝐸𝜈)

𝑁ℓ(E𝜈) = Event rate
𝑃 𝜈ℓ′ → 𝜈ℓ 𝐸𝜈 = Oscillation probability

Φ𝜈(E𝜈) = Neutrino flux

𝜖 𝐸𝜈 = Detector efficiency
𝜎ℓ 𝐸𝜈 = Interaction cross section
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Neutrino Interactions

No Osc.

w/Osc. 

Isolate CCQE events by looking for 
meson-less interactions (“CC0π”)

CC-QE

Assuming CCQE 

scattering off a 

stationary nucleon, 
reconstruct 𝐸𝜈 from 

the observed lepton:

(Charged-Current Quasi-Elastic)
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Analysis Strategy

Far Detector

Super-Kamiokande

𝑁𝜇 𝐸𝜈 = 𝑃(𝜈𝜇 → 𝜈𝜇)𝜎 𝐸𝜈 Φ𝜈 𝐸𝜈 𝜖(𝐸𝜈)

Oscillation 
probability

Interaction 
cross section

Neutrino flux

Detector 
effects

The idea in a nutshell
• Produce beams of 𝜈𝜇 and  𝜈𝜇
• Measure 𝜈𝜇 (disappearance) and 𝜈𝑒 (appearance) event rate at FD

• Parametrise flux, cross-section and detector models

• Constrain the former two at the near detector

• Fit for the oscillation parameters at the far detector

Using data taken up to spring 2020
More has already been taken for our next analysis!
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Analysis Strategy
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ND280 Fit
• Fit flux, cross-section, detector model 

parameters to 18 ND280 samples. 

• Final output is 

parameter 

uncertainties and 

correlations

Prefit

Postfit

More details are provided 
in the backup slides
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ND280 Fit
The constrained model can 

then be used to predict what 

we expect to see at Super K

• Final output is 

parameter 

uncertainties and 

correlations

This is the input to the Far 

detector fit where we extract 

the oscillation parameters

More details are provided 
in the backup slides

𝝁-like CC0π

• Fit flux, cross-section, detector model 

parameters to 18 ND280 samples. 
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Oscillation Fit Samples
Analyse outgoing lepton kinematics from 

5 different samples:
CC0π

• CC0π: majority of CC events, best 
understood, best 𝐸𝜈 reconstruction

Probes 𝑃 𝜈𝜇 → 𝜈𝜇 𝐸𝜈 : 

sensitive to Δ𝑚3ℓ
2 and 𝜃23

Probes 𝑃 𝜈𝜇 → 𝜈𝑒 𝐸𝜈 : 

sensitive to 𝜃13 and 𝛿𝐶𝑃

CC0π

CC0π
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Oscillation Fit Samples
Analyse outgoing lepton kinematics from 

5 different samples:
CC0π

• CC0π: majority of CC events, best 

understood, best 𝐸𝜈 reconstruction

• Include anti-neutrino and neutrino 

samples: additional sensitivity to 𝛿𝐶𝑃

CC0π

CC0π

CC0π CC0π

CC0πCC0π
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Analyse outgoing lepton kinematics from 

5 different samples:
CC0π

• CC0π: majority of CC events, best 

understood, best 𝐸𝜈 reconstruction

• Include anti-neutrino and neutrino 

samples: additional sensitivity to 𝛿𝐶𝑃

• Additional CC1π sample for 𝜈𝑒
appearance
• Lower statistics, less accurate E𝜈, but 

useful to supplement CC0π samples

Oscillation Fit Samples
CC0π

CC0π

CC0π CC0π

CC0πCC0π

CC1π
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• World leading constraint on sin2 𝜃23

• Compatible with maximal mixing (sin2 𝜃23 = 0.5)

Fit results (𝜈𝜇 → 𝜈𝜇)
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Fit results (𝛿𝐶𝑃)

• Large region excluded at 3σ

• CP-conservation (0,±) excluded at 90%

• Weak preference for normal mass 

ordering

T2K Preliminary

T2K Preliminary
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T2K-II: a bright future
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T2K-II: a bright future

More power, more statistics

500 𝑘𝑊 → ~900 𝑘𝑊 → ~1.3 𝑀𝑊

Today ~2024 ~2028

Beam power

• Replacing two of the beam’s magnetic focussing horns

• Upgrading horn power supply to enable faster beam repetition rate

• Improving the beam target cooling capability
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T2K-II: a bright future

Neutron tagging at SK
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T2K-II: a bright future
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ND280 Upgrade
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The Super FGD (SFGD)

The SFGD:

• 2 million scintillator cubes

• 58,000 channels 

• 2.1 tons target mass
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Detector Performance
• Dramatically improved angular 

acceptance

Muon angular acceptance
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Detector Performance

Current ND280

True distribution

• Dramatically improved angular 

acceptance

• Much lower tracking thresholds

ND280 Upgrade

Proton tracking threshold

Muon angular acceptance

Work In Progress



Stephen Dolan EPS-HEP 2021, 26/07/21 14

Detector Performance

Current ND280

True distribution

• Dramatically improved angular 

acceptance

• Much lower tracking thresholds

• Substantially improved resolutions

ND280 Upgrade

Proton tracking threshold

Muon angular acceptance

Work In Progress

Current ND280: ~9%

Momentum resolution

Work In Progress



Stephen Dolan EPS-HEP 2021, 26/07/21 14

Detector Performance

Current ND280

True distribution

• Dramatically improved angular 

acceptance

• Much lower tracking thresholds

• Substantially improved resolutions

• Better timing resolution enables 

neutron energy measurements!

ND280 Upgrade

Proton tracking threshold

Muon angular acceptance

Work In Progress

Current ND280: ~9%

Momentum resolution

Work In Progress
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Physics Sensitivity
• Primary sources of systematic uncertainties stem 

from nuclear effects in neutrino scattering 

• Very difficult to characterise with current ND280 

due to limited proton/neutron acceptance

• The upgrade will overcome these limitations: more 
powerful and less ambiguous model constraints

Current ND280

True distribution

ND280 Upgrade

Proton tracking threshold
Work In Progress

Muon angular acceptance

More details are provided 
in the backup slides
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Summary

• T2K is making world-leading analyses of neutrino oscillations

• Provided first constraints on the 𝛿𝐶𝑃 PMNS parameter, excluding 

the CP conserving values at 90% CL

• Through increased statistics and detector upgrades, T2K will 

continue to improve its measurements as it transitions to T2K-II

• However, to stop future measurements becoming pre-maturely 

limited, it is essential to reduce systematic uncertainties

• The upcoming upgrade to ND280 will allow T2K to confront the 

physics responsible for the most troublesome sources of such 

uncertainties
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BACKUP
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Neutrino Oscillations
• Neutrinos are produced in particular 

weak eigenstates (𝜈𝑒 , 𝜈𝜇, 𝜈𝜏) 

• These are linear combinations of mass 

eigenstates (𝜈1, 𝜈2, 𝜈3) related by a 

unitary matrix, 𝑈𝑃𝑀𝑁𝑆

• Neutrinos propagate in their mass 

eigenstates, losing their flavour 

identity as they go 

• When neutrinos interact, they 

collapses into a weak state again with 
a (𝜈𝑒 , 𝜈𝜇, 𝜈𝜏) probability which depends 

on its current admixture of mass states

𝜈𝜇

𝜇+

𝑊+

PMNS = Pontecorvo-Maki-Nakagawa-Sakata 

𝑊+

𝜈𝑒

𝑒+

The probability of finding a neutrino 

as a particular flavour “oscillates” 
as its mass states evolve 
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WAGASCI/ 

BabyMIND

The Near Detector Complex
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The Near Detector: ND280

Former UA1 Magnet:
• Provides 0.2 T field

Peak Eν

On Axis ~ 1.1 GeV

Off Axis ~ 0.6 GeV

ND280
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The Near Detector: ND280

Peak Eν

On Axis ~ 1.1 GeV

Off Axis ~ 0.6 GeV

ND280

PØD

Fine-Grained Detectors 

(FGD 1 & 2):

• CH scintillator tracker

• Target for 𝜈

• FGD2 contains water
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The Near Detector: ND280

Peak Eν

On Axis ~ 1.1 GeV

Off Axis ~ 0.6 GeV

ND280

PØD

Fine-Grained Detectors 

(FGD 1 & 2):

• CH scintillator tracker

• Target for 𝜈

• FGD2 contains water

Time Projection 

Chambers (TPC):

• Excellent tracking

• High-res charged-

particle momenta

• Accurate particle ID
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The Far Detector (295 km)

• 50 kton of ultra-pure water

• ~11,000 20” PMTs

• 1000 m under a mountain 

• Massive water Cherenkov detector
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The Far Detector (295 km)

• 50 kton of ultra-pure water

• ~11,000 20” PMTs

• 1000 m under a mountain 

• Massive water Cherenkov detector

Particle identification through analysis of 
Cherenkov ring topology 
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ND280 Fit Samples
Analyse outgoing 𝜇+/− momentum and angle from 18 different samples.

These are separated by:

1. FGD 1 / FGD 2 targets

2. Reconstructed pion multiplicity

3. neutrino / anti-neutrino beam mode

4. Charge of the reconstructed muon 

(for anti-neutrino beam mode only)

FGD1 FGD2

TPCs

Separately constrain neutrino 
interactions on Carbon and Oxygen
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ND280 Fit Samples
Analyse outgoing 𝜇+/− momentum and angle from 18 different samples.

These are separated by:

1. FGD 1 / FGD 2 targets

2. Reconstructed pion multiplicity

3. neutrino / anti-neutrino beam mode

4. Charge of the reconstructed muon 

(for anti-neutrino beam mode only)

TPCs
Separation of different 

interaction modes:

• CC0π → Mostly CCQE+2p2h

• CC1π → Mostly RES π prod.

• CCOther → Mostly DIS 
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ND280 Fit Samples
Analyse outgoing 𝜇+/− momentum and angle from 18 different samples.

These are separated by:

1. FGD 1 / FGD 2 targets

2. Reconstructed pion multiplicity

3. neutrino / anti-neutrino beam mode

4. Charge of the reconstructed muon 

(for anti-neutrino beam mode only)

TPCs
Separation of different 

interaction modes:

• CC0π → Mostly CCQE+2p2h

• CC1π → Mostly RES π prod.

• CCOther → Mostly DIS 

Understand differences in neutrino 

and anti-neutrino interactions
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ND280 Fit Samples
Analyse outgoing 𝜇+/− momentum and angle from 18 different samples.

These are separated by:

1. FGD 1 / FGD 2 targets

2. Reconstructed pion multiplicity

3. neutrino / anti-neutrino beam mode

4. Charge of the reconstructed muon 

(for anti-neutrino beam mode only*)

Accounts for the neutrino contamination to 

the anti-neutrino beam mode

*Not needed in neutrino beam mode since the anti-neutrino contamination is very small
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Oscillation Fit
In the fit

• Oscillation parameters

• Flux + cross-section parameters 

(most contained by ND280 fit)

• Super-K detector model parameters 

• Use measurement of 𝜃13 from 

reactor experiments as an extra 

constraint
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J-PARC: Proton Accelerator
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The T2K Flux Prediction
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J-PARC: Neutrino Beamline
• Accelerated 30 GeV protons hit a 

graphite target and produce 𝜋, 𝐾

• Charged 𝜋+(−) are focussed 

towards SuperK using three 

magnetic horns

• 𝜋+(−) decay in specialised volume 

to 𝜇+(−) + 𝜈𝜇

• Select 𝜈𝜇/  𝜈𝜇 by focussing 𝜋+/𝜋−
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Off-Axis Beam
• Beam pointed 2.5° off-axis from 

Super-K

• Off-axis beam → Narrower neutrino 

energy spectrum 

• Beam peaked at oscillation 

maximum 

• Maximises sensitivity to oscillation 

parameters at the cost of a lower 
event rate
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Data set
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The Near Detectors (280m)

INGRID (front View) :

Peak Eν

On Axis ~ 1.1 GeV

Off Axis ~ 0.6 GeV

ND280
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The Near Detectors (280m)
INGRID (front view) :

Proton Module (fully active

scintillator tracker) or

Water Module (interleaved 

layers of water) 

INGRID (top view) :

Fe, H20 and CH targets available
INGRID Modules: Stacks of scintillator 

bars interleaved with Iron sheets.
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Analysis Strategy
Systematic Uncertainties
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Analysis Strategy

N.B.: T2K actually runs 

three oscillation analyses, 

one of which does the 
two fits simultaneously. 
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Analysis Strategy
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three oscillation analyses, 

one of which does the 
two fits simultaneously.
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Reactor Constraint
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𝜈𝑒 and  𝜈𝑒 appearance 
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Ongoing joint fits

• Simultaneous analysis of experiments with different 

baselines/energies/detector technologies

• Expect increased sensitivity beyond the improved statistics
• Sensitivity in one experiment can resolve parameter degeneracies in another
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SK with Gadolinium

• Gd allows detection of neutrons: 

useful for T2K physics as well as for 

supernova relic neutrinos 

• Plans for Gadolinium (Gd) loading 

at SK are proceeding well 
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Why do we need an Upgrade?
• Current measurements are statistics limited, but not for long!

• Largest systematics related to neutrino-nucleus interactions
• Often degenerate with oscillation parameters 

• Confuse neutrino energy reconstruction 

• Essential to reduce this uncertainty for future analyses
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Physics Sensitivity

• SFGD can measure the transverse 

momentum imbalance between the 

outgoing muon and proton  

• Sensitive to the physics which drives the main 

uncertainties in neutrino oscillation analyses

SFGD

ND280 Upgrade× 10−38 Old ND280

8 × 1021 POT
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Physics Sensitivity

• SFGD can use alternative methods 

of reconstructing neutrino energy

• Uses both the outgoing muon and 

proton energies as an estimator

SFGD

low binding 
energy

high binding 
energy

𝐸𝜇 + 𝑇𝑝

𝐸𝜈
𝑄𝐸

formula 

(muon-only)

• More robust 𝐸𝜈 estimator: 

more sensitive to physics 

that can cause a poor 

reconstruction of neutrino 

energy 
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Physics Sensitivity
• Improved pion tracking thresholds 

and decay electron tagging allow 

access to much wider phase space 

than before

SFGD

ND280 high efficiency regions

ND280 Upgrade estimated charged pion 
tracking efficiency (w/o decay 𝒆− tagging)

• Can measure kinematics of untracked 

pions using decay electron positon!

• Lower proton and pion tracking 

thresholds better permit analyses of 

three particle final states
• More sensitive to key physics

• ~5 times higher efficiency
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SFGD: a neutron detector
• Can look for neutrons via their re-interaction within a detector

• If the path is long enough (>20 cm) neutron energy is measured 

using the time of flight with resolution 15-30% (for ~1 ns timing 

resolution)

Phys. Rev. D 101, 092003
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T2K Projected Sensitivity

arXiv:1607.08004
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𝜈 oscillations need 𝜈 cross sections

• Need to know Φ× 𝜎 in order to interpret 

𝑁𝑜𝑏𝑠 as 𝑃(𝛼 → 𝛽)
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• Need to know Φ× 𝜎 in order to interpret 

𝑁𝑜𝑏𝑠 as 𝑃(𝛼 → 𝛽)

• Near / far ratios don’t fully cancel this:

• Dramatic change in 𝐸𝜈 distribution

• 𝜈𝜇 at ND vs 𝜈𝑒 at FD (for appearance) 

• Different ND/FD design, acceptance 

𝜈 oscillations need 𝜈 cross sections
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• Need to know Φ× 𝜎 in order to interpret 

𝑁𝑜𝑏𝑠 as 𝑃(𝛼 → 𝛽)

• Near / far ratios don’t fully cancel this:

• Dramatic change in 𝐸𝜈 distribution

• 𝜈𝜇 at ND vs 𝜈𝑒 at FD (for appearance) 

• Different ND/FD design, acceptance 

• Not just counting experiments: Require a 

model to relate 𝐸𝜈
𝑟𝑒𝑐𝑜 to 𝐸𝜈

𝑡𝑟𝑢𝑒

Δ𝑚32
2

𝜃23

𝜈 oscillations need 𝜈 cross sections
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Calculation from lepton kinematics is perfect only 

for elastic scattering off a stationary nucleon

CCQE (1p1h)
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The motion of the nucleons inside the nucleus 

(Fermi motion) causes a smearing on 𝐸𝜈

CCQE (1p1h)
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The motion of the nucleons inside the nucleus 

(Fermi motion) causes a smearing on 𝐸𝜈

The energy loss in the nucleus (to extract the struck 

nucleon from its shell) introduces a bias

CCQE (1p1h)
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The motion of the nucleons inside the nucleus 

(Fermi motion) causes a smearing on 𝐸𝜈

The energy loss in the nucleus (to extract the struck 

nucleon from its shell) introduces a bias

Does not work well for non-CCQE events: 2p2h 

and CC1π with pion abs. FSI

2p2hCCRES

𝜋+

Final state interactions 
(FSI) can cause different 

interaction modes to 
have the same final state 

Interactions off a bound 
state of two nucleons can 
result in 2p2h final states  

CCQE (1p1h)
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• Different models can predict quite 

different cross section ratios!

• Critical for the future 

CRPA

𝐸𝜈 = 200 𝑀𝑒𝑉 𝐸𝜈 = 600 𝑀𝑒𝑉

Model 5° 60° 5° 60°

RFG 
(w/PB)

0.64 1.61 0.97 1.03

SF (full) 1.41 1.92 1.04 1.03

CRPA ~0.5 ~1.4 ~0.9 ~1.0

Phys. Rev. Lett. 123, 052501

Tabulated from Phys. Rev. C 96, 035501 and the left figure

These differences are predicted 

in regions that are relevant to 

T2K/HK oscillation analyses

Electron vs muon neutrino cross sections
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End


