26/07/21

T2K Status and Plans

Oscillations, Interactions and the search for CP-Violation

Stephen Dolan for the T2K Collaboration

stephen.joseph.dolan@cern.ch

1

EPS-HEP 2021, 26/07/21

Stephen Dolan

~500 members, 69 Institutes, 12 countries

~500 members, 69 Institutes, 12 countries

Neutrino Oscillations

- Oscillation probabilities depends on:
 - The neutrino energy
 - The travelled distance ("baseline")
 - The difference in masses of v_1, v_2, v_3
 - The PMNS mixing parameters

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^* \\ U_{\mu1}^* & U_{\mu2}^* & U_{\mu3}^* \\ U_{\tau1}^* & U_{\tau2}^* & U_{\tau3}^* \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Neutrino Oscillations

- Oscillation probabilities depends on:
 - The neutrino energy
 - The travelled distance ("baseline")
 - The difference in masses of v_1, v_2, v_3
 - The PMNS mixing parameters

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^* \\ U_{\mu1}^* & U_{\mu2}^* & U_{\mu3}^* \\ U_{\tau1}^* & U_{\tau2}^* & U_{\tau3}^* \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{+i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} s_{ij} = \sin \theta_{ij}$$

• Three mixing angles: $\theta_{12}, \theta_{13}, \theta_{23}$
• One CP-Violating phase: δ_{CP}
From reactor experiments
(e.g. Daya Bay) and from
measuring $P(v_{\mu} \rightarrow v_{\mu})$

Neutrino Oscillations

Produce predominantly v_{μ} neutrino or anti-neutrino beam

Near Detector ND280

Stephen Dolan

Stephen Dolan

Near Detector ND280

Stephen Dolan

Near Detector ND280

Stephen Dolan

Neutrino Interactions $N_{\ell}(E_{\nu}) = P(\nu_{\mu} \to \nu_{\ell})(E_{\nu}) \sigma(E_{\nu}) \Phi_{\nu}(E_{\nu}) \epsilon(E_{\nu})$ $\Phi_{\nu}(E_{\nu}) = \text{Neutrino flux}$ = Event rate $N_{\ell}(E_{\nu})$ $P(v_{\ell'} \rightarrow v_{\ell})(E_{\nu}) = Oscillation probability \quad \epsilon(E_{\nu}) = Detector efficiency$ $\sigma_{\ell}(E_{\nu})$ = Interaction cross section CC-2p2h CC-QE (2 particle, 2 hole) (Charged-Current Quasi-Elastic) - CC-Inclusive ····· CC-QE ····· CC-SPP ····· CC-DIS ----- CC-2p2h v_{μ} ν_{μ} ${ m Flux}~(10^{16}~/{ m cm^2/GeV}/10^{21}{ m POT})$ $au(E_{ u})/E_{ u}(10^{-38} ext{ cm}^2/ ext{GeV/Nucleon})$ T2K 8 W No Osc. w/Osc. n р CC-SPP 0.5(Single Pion Production)

0.5

1

1.5

 $E_{\nu}(\text{GeV})$

 $\mathbf{2}$

0

0

EPS-HEP 2021, 26/07/21

n

 Δ^+

Neutrino Interactions $N_{\ell}(E_{\nu}) = P(\nu_{\mu} \to \nu_{\ell})(E_{\nu}) \sigma(E_{\nu}) \Phi_{\nu}(E_{\nu}) \epsilon(E_{\nu})$ $\Phi_{\nu}(E_{\nu}) = \text{Neutrino flux}$ = Event rate $N_{\ell}(E_{\nu})$ $P(v_{\ell'} \rightarrow v_{\ell})(E_{\nu}) = Oscillation probability \quad \epsilon(E_{\nu}) = Detector efficiency$ $\sigma_{\ell}(E_{\nu})$ = Interaction cross section CC-2p2h CC-QE (2 particle, 2 hole) (Charged-Current Quasi-Elastic) - CC-Inclusive ····· CC-QE ····· CC-SPP ····· CC-DIS ----- CC-2p2h v_{μ} T2K 8 No Osc.

The idea in a nutshell

- Produce beams of v_{μ} and \bar{v}_{μ}
- Measure $\bar{\nu}_{\mu}$ (disappearance) and $\bar{\nu}_{e}$ (appearance) event rate at FD
- Parametrise flux, cross-section and detector models
- Constrain the former two at the near detector
- Fit for the oscillation parameters at the far detector

Neutrino flux model

Cross-section model

Stephen Dolan

Stephen Dolan

ND280 Fit

More details are provided in the backup slides

• Fit flux, cross-section, detector model parameters to 18 ND280 samples.

Stephen Dolan

ND280 Fit

More details are provided in the backup slides

The constrained model can then be used to predict what we expect to see at Super K

This is the input to the Far detector fit where we extract the oscillation parameters • Fit flux, cross-section, detector model parameters to 18 ND280 samples.

XSec

Flux

Oscillation Fit Samples

Analyse outgoing lepton kinematics from 5 **different samples**:

• CC0 π : majority of CC events, best understood, best E_{ν} reconstruction

Stephen Dolan

Stephen Dolan

Oscillation Fit Samples

Analyse outgoing lepton kinematics from 5 **different samples**:

- CC0 π : majority of CC events, best understood, best E_{ν} reconstruction
- Include anti-neutrino and neutrino samples: additional sensitivity to δ_{CP}

Oscillation Fit Samples

Analyse outgoing lepton kinematics from 5 **different samples**:

- CC0 π : majority of CC events, best understood, best E_{ν} reconstruction
- Include anti-neutrino and neutrino samples: additional sensitivity to δ_{CP}
- Additional CC1 π sample for ν_e appearance
 - Lower statistics, less accurate $E_{\nu},$ but useful to supplement CC0 π samples

- World leading constraint on $\sin^2 \theta_{23}$
- Compatible with maximal mixing (sin² $\theta_{23} = 0.5$)

Fit results (δ_{CP})

T2K-II: a bright future

T2K-II: a bright future

More power, more statistics

<u>Beam power</u>		
500 <i>kW</i>	$\rightarrow \sim 900 \; kW$	$\rightarrow \sim 1.3 \ MW$
Today	~2024	~2028

- Replacing two of the beam's magnetic focussing horns
- Upgrading horn power supply to enable faster beam repetition rate
- Improving the beam target cooling capability

T2K-II: a bright future

Neutron tagging at SK

T2K-II: a bright future

Stephen Dolan

Stephen Dolan

Stephen Dolan

The Super FGD (SFGD)

The SFGD:

- 2 million scintillator cubes
- 58,000 channels
- 2.1 tons target mass

Dramatically improved angular acceptance

Stephen Dolan

- Dramatically improved angular acceptance
- Much lower tracking thresholds

Stephen Dolan

- Dramatically improved angular acceptance
- Much lower tracking thresholds
- Substantially improved resolutions

- Dramatically improved angular acceptance
- Much lower tracking thresholds
- Substantially improved resolutions
- Better timing resolution enables neutron energy measurements!

Physics Sensitivity

- Primary sources of systematic uncertainties stem from nuclear effects in neutrino scattering
- Very difficult to characterise with current ND280 due to limited proton/neutron acceptance
- The upgrade will overcome these limitations: more powerful and **less ambiguous** model constraints

More details are provided in the backup slides

Stephen Dolan

Summary

- T2K is making world-leading analyses of neutrino oscillations
- Provided first constraints on the δ_{CP} PMNS parameter, excluding the CP conserving values at 90% CL
- Through increased statistics and detector upgrades, T2K will continue to improve its measurements as it transitions to T2K-II
- However, to stop future measurements becoming pre-maturely limited, it is essential to reduce systematic uncertainties
- The upcoming upgrade to ND280 will allow T2K to confront the physics responsible for the most troublesome sources of such uncertainties

BACKUP

Stephen Dolan

Neutrino Oscillations

- Neutrinos are **produced** in particular weak eigenstates (v_e, v_μ, v_τ)
- These are linear combinations of mass eigenstates (v_1, v_2, v_3) related by a unitary matrix, U_{PMNS}
- Neutrinos propagate in their mass eigenstates, losing their flavour identity as they go
- When neutrinos interact, they collapses into a weak state again with a (v_e, v_μ, v_τ) probability which depends on its current admixture of mass states

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^* \\ U_{\mu1}^* & U_{\mu2}^* & U_{\mu3}^* \\ U_{\tau1}^* & U_{\tau2}^* & U_{\tau3}^* \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

PMNS = Pontecorvo-Maki-Nakagawa-Sakata

Stephen Dolan

The Near Detector: ND280

Stephen Dolan

The Near Detector: ND280

The Far Detector (295 km)

Upper dome of Super-K

- Massive water Cherenkov detector
 - 50 kton of ultra-pure water
 - ~11,000 20" PMTs
 - 1000 m under a mountain

Stephen Dolan

The Far Detector (295 km)

Electron or muon PID discriminator

Stephen Dolan

Analyse outgoing $\mu^{+/-}$ momentum and angle from **18 different samples**. These are separated by:

- 1. FGD 1 / FGD 2 targets
- 2. Reconstructed pion multiplicity
- 3. neutrino / anti-neutrino beam mode
- 4. Charge of the reconstructed muon (for anti-neutrino beam mode only)

Separately constrain neutrino interactions on Carbon and Oxygen

Stephen Dolan

Analyse outgoing $\mu^{+/-}$ momentum and angle from **18 different samples**. These are separated by:

- 1. FGD 1 / FGD 2 targets
- 2. Reconstructed pion multiplicity
- 3. neutrino / anti-neutrino beam mode
- 4. Charge of the reconstructed muon (for anti-neutrino beam mode only)

Separation of different interaction modes:

- CC0 π \rightarrow Mostly CCQE+2p2h
- CC1 π \rightarrow Mostly RES π prod.
- CCOther \rightarrow Mostly DIS

Analyse outgoing $\mu^{+/-}$ momentum and angle from **18 different samples**. These are separated by:

- 1. FGD 1 / FGD 2 targets
- 2. Reconstructed pion multiplicity
- 3. neutrino / anti-neutrino beam mode
- 4. Charge of the reconstructed muon (for anti-neutrino beam mode only)

Separation of different interaction modes:

- CC0 π \rightarrow Mostly CCQE+2p2h
- CC1 π \rightarrow Mostly RES π prod.
- CCOther \rightarrow Mostly DIS

Understand differences in neutrino and anti-neutrino interactions

Analyse outgoing $\mu^{+/-}$ momentum and angle from **18 different samples**. These are separated by:

- 1. FGD 1 / FGD 2 targets
- 2. Reconstructed pion multiplicity
- 3. neutrino / anti-neutrino beam mode
- 4. Charge of the reconstructed muon (for anti-neutrino beam mode only*)

Wrong-sign bkg.

Accounts for the neutrino contamination to the anti-neutrino beam mode

*Not needed in neutrino beam mode since the anti-neutrino contamination is very small

Stephen Dolan

Oscillation Fit

In the fit

- Oscillation parameters
- Flux + cross-section parameters (most contained by ND280 fit)
- Super-K detector model parameters

FHC 1Re

0.8

Reconstructed Neutrino Energy [GeV]

• Use measurement of θ_{13} from reactor experiments as an extra constraint

EPS-HEP 2021, 26/07/21

Stephen Dolan

Ratio to unosc.

Events in bin

16 F

12

2

J-PARC: Proton Accelerator

Stephen Dolan

The T2K Flux Prediction

J-PARC: Neutrino Beamline

- Accelerated 30 GeV protons hit a graphite target and produce π, K
- Charged $\pi^{+(-)}$ are focussed towards SuperK using three magnetic horns
- $\pi^{+(-)}$ decay in specialised volume to $\mu^{+(-)} + \bar{\nu}_{\mu}$

ND280

NGRID

 2.5°

• Select v_{μ}/\bar{v}_{μ} by focussing π^+/π^-

to SuperK 🗸

Off-Axis Beam

- Beam pointed 2.5° off-axis from Super-K
- Off-axis beam → Narrower neutrino energy spectrum
- Beam peaked at oscillation maximum
- Maximises sensitivity to oscillation parameters at the cost of a lower event rate

ND280

INGRID

 2.5°

to SuperK +

Stephen Dolan

Data set

Improvements on Nature paper

- Far detector statistics: +32% v POT, same anti-v POT
- Near detector statistics: +98% v POT, +116% anti-v POT
- Improved flux constraint, using NA61/SHINE replica target data

Overhauled interaction model, and updated ND280 selections Clarence Wret

Stephen Dolan

38

Stephen Dolan

The Near Detectors (280m)

INGRID (front view) :

INGRID (top view):

INGRID Modules: Stacks of scintillator bars interleaved with Iron sheets.

Stephen Dolan

Analysis Strategy

Systematic Uncertainties

Stephen Dolan

Analysis Strategy

Stephen Dolan

Analysis Strategy

Reactor Constraint

T2K Run 1-10 Preliminary

v_e and \bar{v}_e appearance

	Octant					
ing		$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Sum		
rder	NO $(\Delta m^2_{32} > 0)$	0.195	0.613	0.808		
SS O	IO $(\Delta m_{32}^2 < 0)$	0.034	0.158	0.192		
Mas	Sum	0.229	0.771	1.000		

SK + T2K Comparison of released contours (not joint fit) NOvA results: A. Himmel (2020) Zenodo, T2K Preliminary 2

- Simultaneous analysis of experiments with different baselines/energies/detector technologies
- Expect increased sensitivity beyond the improved statistics
 - Sensitivity in one experiment can resolve parameter degeneracies in another

SK with Gadolinium

- Gd allows detection of neutrons: useful for T2K physics as well as for supernova relic neutrinos
- Plans for Gadolinium (Gd) loading at SK are proceeding well

Stephen Dolan

Why do we need an Upgrade?

- Current measurements are statistics limited, but not for long!
- Largest systematics related to **neutrino-nucleus interactions**
 - Often degenerate with oscillation parameters
 - Confuse neutrino energy reconstruction
- Essential to reduce this uncertainty for future analyses

 $N_{\ell}(E_{\nu}) = P(\nu_{\mu} \to \nu_{\ell})(E_{\nu}) \sigma(E_{\nu}) \Phi_{\nu}(E_{\nu}) \epsilon(E_{\nu})$

$V_{\ell}(E_{\nu})$	=	Event rate
$P(\nu_{\ell'} \to \nu_{\ell})(E_{\nu})$	=	Oscillation probabilit

- $\Phi_{\nu}(E_{\nu}) = \text{Neutrino flux}$ $\epsilon(E_{\nu})$ = Detector efficiency
- $\sigma_{\ell}(E_{\nu})$ = Interaction cross section

	$\ $ 1R μ					
Error source (units: %)	FHC	RHC	FHC	RHC	FHC $CC1\pi^+$	FHC/RHC
Flux	2.9	2.8	2.8	2.9	2.8	1.4
Xsec (ND constr)	3.1	3.0	3.2	3.1	4.2	1.5
Flux+Xsec (ND constr)	2.1	2.3	2.0	2.3	4.1	1.7
Xsec (ND unconstrained)	0.6	2.5	3.0	3.6	2.8	3.8
SK+SI+PN	2.1	1.9	3.1	3.9	13.4	1.2
Total	3.0	4.0	4.7	5.9	14.3	4.3

Physics Sensitivity

• SFGD can measure the **transverse momentum imbalance** between the outgoing muon and proton

 Sensitive to the physics which drives the main uncertainties in neutrino oscillation analyses

Physics Sensitivity

- SFGD can use alternative methods of reconstructing neutrino energy
- Uses both the outgoing muon and proton energies as an estimator

• More robust E_{ν} estimator: more sensitive to physics that can cause a poor reconstruction of neutrino energy

Physics Sensitivity

 Improved pion tracking thresholds and decay electron tagging allow access to much wider phase space than before

ND280 Upgrade estimated charged pion

tracking efficiency (w/o decay e^- tagging)

ND280 high efficiency regions

- Can measure kinematics of untracked pions using decay electron positon!
- Lower proton and pion tracking thresholds better permit analyses of three particle final states
 - More sensitive to key physics
 - ~5 times higher efficiency

Stephen Dolan

SFGD: a neutron detector

- Can look for neutrons via their re-interaction within a detector
- If the path is long enough (>20 cm) neutron energy is measured using the time of flight with resolution 15-30% (for ~1 ns timing resolution)

Stephen Dolan

T2K Projected Sensitivity

ν oscillations need ν cross sections

$$N_{\textit{pred}}(E_{\nu}^{\textit{reco}}) = \Phi(E_{\nu}^{\textit{true}}) \sigma(E_{\nu}^{\textit{true}}) P(\alpha \rightarrow \beta, E_{\nu}^{\textit{true}}) \epsilon(E_{\nu}^{\textit{true}}) S(E_{\nu}^{\textit{true}}, E_{\nu}^{\textit{reco}})$$

$N_{\it pred}(E_{ m v}^{\it reco})$	= Expected number of events	
$\Phi(E_{v}^{ true})$	= Neutrino flux	
$\sigma(E_{v}^{ true})$	= Interaction cross sections	

$P(lpha ightarrow eta$, $E_{ ext{v}}^{ ext{true}})$	=	Oscillation probability
$\epsilon(E_{v}^{\it true})$	=	Selection efficiency
$S(E_{ ext{v}}^{ ext{true}}$, $E_{ ext{v}}^{ ext{reco}})$	=	Smearing matrix

• Need to know $\Phi \times \sigma$ in order to interpret N_{obs} as $P(\alpha \rightarrow \beta)$

ν oscillations need ν cross sections

$$N_{pred}(E_{\nu}^{reco}) = \Phi(E_{\nu}^{true}) \sigma(E_{\nu}^{true}) P(\alpha \rightarrow \beta, E_{\nu}^{true}) \epsilon(E_{\nu}^{true}) S(E_{\nu}^{true}, E_{\nu}^{reco})$$

$m{N}_{\it pred}(E_{ m v}^{\it reco})$	= Expected number of events
$\Phi(E_{ m v}^{\it true})$	= Neutrino flux
$\sigma({E}_{ extsf{v}}^{ extsf{true}})$	= Interaction cross sections

$$P(\alpha \rightarrow \beta, E_{\nu}^{true}) = \text{Oscillation probability}$$

$$\epsilon(E_{\nu}^{true}) = \text{Selection efficiency}$$

$$S(E_{\nu}^{true}, E_{\nu}^{reco}) = \text{Smearing matrix}$$

• Need to know
$$\Phi \times \sigma$$
 in order to interpret N_{obs} as $P(\alpha \rightarrow \beta)$

- Near / far ratios don't fully cancel this:
 - Dramatic change in E_{ν} distribution
 - v_{μ} at ND vs v_e at FD (for appearance)
 - Different ND/FD design, acceptance

ν oscillations need ν cross sections

$$N_{pred}(E_{\nu}^{reco}) = \Phi(E_{\nu}^{true}) \sigma(E_{\nu}^{true}) P(\alpha \rightarrow \beta, E_{\nu}^{true}) \epsilon(E_{\nu}^{true}) S(E_{\nu}^{true}, E_{\nu}^{reco})$$

$m{N}_{\it pred}(m{E}_{ u}^{\it reco})$	= Expected number of events
$\Phi({E}_{ u}^{ extsf{true}})$	= Neutrino flux
$\sigma({E}_{ extsf{v}}^{ extsf{true}})$	= Interaction cross sections

$$P(\alpha \rightarrow \beta, E_{\nu}^{true}) = \text{Oscillation probability}$$

$$\epsilon(E_{\nu}^{true}) = \text{Selection efficiency}$$

$$S(E_{\nu}^{true}, E_{\nu}^{reco}) = \text{Smearing matrix}$$

• Need to know
$$\Phi \times \sigma$$
 in order to interpret N_{obs} as $P(\alpha \rightarrow \beta)$

- Near / far ratios don't fully cancel this:
 - Dramatic change in E_{ν} distribution
 - v_{μ} at ND vs v_e at FD (for appearance)
 - Different ND/FD design, acceptance
- Not just counting experiments: Require a model to relate E_{ν}^{reco} to E_{ν}^{true}

CCQE (1p1h)

CCQE (1p1h)

CCQE (1p1h)

$$E_{\nu} = \frac{m_p^2 - (m_n - E_b)^2 - m_{\mu}^2 + 2(m_n - E_b)E_{\mu}}{2(m_n - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

The motion of the nucleons inside the nucleus (Fermi motion) causes a **smearing** on E_{ν}

The energy loss in the nucleus (to extract the struck nucleon from its shell) introduces a **bias**

$$E_{\nu} = \frac{m_p^2 - (m_n - E_b)^2 - m_{\mu}^2 + 2(m_n - E_b)E_{\mu}}{2(m_n - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

The motion of the nucleons inside the nucleus (Fermi motion) causes a **smearing** on E_{ν}

The energy loss in the nucleus (to extract the struck nucleon from its shell) introduces a **bias**

Does not work well for non-CCQE events: 2p2h and CC1 π with pion abs. FSI

Electron vs muon neutrino cross sections

 $\frac{\mathrm{d}\sigma_e/\mathrm{d}cos\theta}{\mathrm{d}\sigma_\mu/\mathrm{d}cos\theta}$

	$E_{\nu}=20$	00 MeV	$E_{\nu} = 600 \; MeV$		
Model	5° 60°		5°	60°	
RFG (w/PB)	0.64	1.61	0.97	1.03	
SF (full)	1.41	1.92	1.04	1.03	
CRPA	~0.5	~1.4	~0.9	~1.0	

Tabulated from Phys. Rev. C 96, 035501 and the left figure

Stephen Dolan

End