

Latest 3-flavor neutrino oscillations results from the NOvA experiment

Steven Calvez on behalf of the NOvA collaboration EPS HEP 2021 July 26th 2021 EUROPEAN PHYSICAL SOCIETY HEP2021 VIRTUAL EDITION

http://novaexperiment.fnal.gov

COLORADO STATE UNIVERSITY

• **NOvA** is a **long-baseline neutrino oscillation** experiment. Aims to address the following open questions:

- **NOvA** is a **long-baseline neutrino oscillation** experiment. Aims to address the following open questions:
 - What is the value of θ_{23} ? $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$? ν_{μ} ν_{τ} symmetry?

- **NOvA** is a **long-baseline neutrino oscillation** experiment. Aims to address the following open questions:
 - What is the **value of** θ_{23} ? $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$? v_{μ} v_{τ} symmetry?
 - What is the **value of** Δm_{32}^2 ? Normal or Inverted Hierarchy?

- **NOvA** is a **long-baseline neutrino oscillation** experiment. Aims to address the following open questions:
 - What is the value of θ_{23} ? $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$? v_{μ} v_{τ} symmetry?
 - What is the **value of** Δm_{32}^2 ? Normal or Inverted Hierarchy?
 - o Is there CP violation in the lepton sector?

- **NOvA** is a **long-baseline neutrino oscillation** experiment. Aims to address the following open questions:
 - What is the value of θ_{23} ? $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$? v_{μ} v_{τ} symmetry?
 - What is the **value of** Δm_{32}^2 ? Normal or Inverted Hierarchy?
 - o Is there CP violation in the lepton sector?
- NOvA has a rich physics program:
 - Neutrino cross-section measurements.
 - Search for sterile neutrinos.
 - Investigate **astrophysical** and **exotics** phenomena: see Peter Filip's poster in Session T10.

- NOvA measures the **rate**, **energy and flavor of neutrinos detected** both near its **source** and in its **detector** far away.
- Perform a joint disappearance $\nu_{\mu} \rightarrow \nu_{\mu}$ and appearance $\nu_{\mu} \rightarrow \nu_{e}$ analysis.

• Measure $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}$ disappearance to constrain $\sin^2 2\theta_{23}$ and $|\Delta m_{32}^2|$:

• v_{μ} survival probability:

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{23}) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

• Measure $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}$ disappearance to constrain $\sin^2 2\theta_{23}$ and $|\Delta m_{32}^2|$:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{23}) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

• Location of dip $\rightarrow |\Delta m^2_{32}|$

curvival probability:

• Measure $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}$ disappearance to constrain $\sin^2 2\theta_{23}$ and $|\Delta m_{32}^2|$:

•
$$\nu_{\mu}$$
 survival probability:
 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \cos^{4}(\theta_{13}) \sin^{2}(2\theta_{23}) \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$

- Location of dip $\rightarrow |\Delta m^2_{32}|$
- Amplitude of dip ightarrow $\sin^2 2 heta_{23}$

• Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :

$$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

• Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :

- Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :
 - v_e appearance probability:

$$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\frac{1}{\sqrt{P_{\text{atm}}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

> CP-violation generates opposite effects in v and \overline{v} oscillation probabilities.

- Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :
 - v_e appearance probability:

$$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\frac{1}{\sqrt{P_{\text{atm}}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

> Matter effects also generate opposite effects in $\nu - \overline{\nu}$ oscillations depending on the Mass Hierarchy.

- Measure $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ appearance to constrain $\sin^{2}\theta_{23}$, Δm^{2}_{32} and δ_{CP} :
 - v_e appearance probability:

$$P(\nu_{\mu} \to \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\frac{1}{\sqrt{P_{\text{atm}}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

> θ_{23} can increase or decrease ν and $\overline{\nu}$ oscillations probabilities.

What is the NOvA experiment?

How are neutrinos produced?

- **NuMI beam** can produce both v_{μ} and $\overline{v_{\mu}}$.
- World most powerful neutrino beam: peak hourly average of 805kW.
- +50% neutrino mode exposure between 2019 and 2020 analyses.
- Ongoing improvements to reach 900kW.

MW-capable target

2017

Date

2018

2016

2014

2015

2020

2019

Cumulative 2

How are neutrinos detected?

 The NOvA Near Detector and Far Detector are both segmented liquid scintillator detectors providing 3D tracking and calorimetry.

• Near Detector:

- 290 tons.
- >100 m underground at Fermilab.

• Far Detector:

- 14 ktons.
- 810 km away on the surface in Minnesota.

How are neutrinos detected?

 Alternating horizontal/vertical planes composed of extruded PVC cells filled with mineral oil doped with scintillating material.

> • Charged particles ionize the medium and produce scintillation light. The light is picked up by wavelength shifting fibers.

 An Avalance PhotoDiode collects and amplifies the light signal.

What do neutrino events look like in NOvA?

- Use Machine Learning techniques to select and identify neutrino interactions.
- **Particles energies** are reconstructed from the track length, the calorimetric energy deposits, or from dedicated Deep Learning algorithms.

What are NOvA's latest 3-flavor oscillation results?

What are NOvA's latest 3-flavor oscillation results?

What is NOvA's constraint on $\sin^2\theta_{23}$ and Δm^2_{32} ?

- Best fit in Normal Hierarchy and Upper Octant ($\theta_{23} > 45^{\circ}$).
- Precision measurements:
 - $\Delta m_{32}^2 = 2.41 \pm 0.07 \times 10^{-3} \,\text{eV}^2 \ (\pm 3\%)$ $\sin^2 \theta_{23} = 0.57^{+0.04}_{-0.03} \ (\pm 7\%)$
- Preference for:
 - Normal Hierarchy at 1.0σ
 - Upper Octant at 1.2σ
 - Non-maximal mixing at 1.1σ

What is NOvA's constraint on δ_{CP} ?

• Observed $v_e - \overline{v_e}$ appearance rates fall in a degenerate region of the param. space.

What is NOvA's constraint on δ_{CP} ?

- Observed $v_e \overline{v_e}$ appearance rates fall in a degenerate region of the param. space.
- No significant $v_e \overline{v_e}$ asymmetry observed.

What is NOvA's constraint on δ_{CP} ?

- Observed $v_e \overline{v_e}$ appearance rates fall in a degenerate region of the param. space.
- No significant v_e $\overline{v_e}$ asymmetry observed.
- Disfavor IH $\delta_{CP} = \pi/2$ at >3 σ and NH $\delta_{CP} = 3\pi/2$ at 2 σ .

What is NOvA's future sensitivity?

- Run until **2026**, accumulating more than 3×10^{21} POT in both ν and $\overline{\nu}$ modes.
- Could reach 5σ sensitivity to Mass Hierarchy for the most favorable parameter.
- Probe the majority of δ_{CP} values at 2σ -level.

• **High Performance Computing** enables great **speed ups** and previously computationally prohibitive analysis techniques to be explored.

- **High Performance Computing** enables great **speed ups** and previously computationally prohibitive analysis techniques to be explored.
- Development of **Machine Learning** tools to address some of the biggest reconstruction challenges, like pion energy estimation, etc.

- High Performance Computing enables great speed ups and previously computationally prohibitive analysis techniques to be explored.
- Development of **Machine Learning** tools to address some of the biggest reconstruction challenges, like pion energy estimation, etc.
- NOvA Test Beam program is ongoing at Fermilab Test Beam Facility: reduce our largest systematics.

- **High Performance Computing** enables great **speed ups** and previously computationally prohibitive analysis techniques to be explored.
- Development of **Machine Learning** tools to address some of the biggest reconstruction challenges, like pion energy estimation, etc.
- NOvA Test Beam program is ongoing at Fermilab Test Beam Facility: reduce our largest systematics.
- Many important **neutrino cross-section** measurements from NOvA are coming.
- NOvA-T2K joint fit effort ongoing.

Conclusions

- Latest results with 50% more neutrino mode exposure and updated analysis.
- Preference for Normal Hierarchy (1.0σ) and Upper Octant (1.2σ) .
- Achieved some of the **most precise measurement** of:
 - $-\Delta m_{32}^2 = 2.41 \pm 0.07 \times 10^{-3} \,\mathrm{eV}^2$
 - $-\sin^2\theta_{23}=0.57^{+0.04}_{-0.03}$
- Exclude IH $\delta_{CP}=\pi/2$ at >3 σ and disfavor NH $\delta_{CP}=3\pi/2$ at 2 σ .
- Stay tuned for many interesting papers to appear soon!

Backup

Joint NOvA-T2K analysis

- **T2K results** are statistically compatible with ours.
- Ongoing effort towards a joint NOvA-T2K fit.

Δm_{32}^2 vs. $\sin^2\theta_{23}$

 $sin^2\theta_{23}$ vs. δ_{CP}

Δm_{32}^2 and $\sin^2\theta_{23}$

Mass hierarchy CL_s

• **CL**_s factor : 0.620

How are confidence intervals built?

- Generate and fit millions of pseudoexperiments to build empirical χ^2 -distributions: Feldman-Cousins approach.
- Extremely computationally expensive.
- Implemented a massive parallel framework on High Performance Computing platforms like NERSC, in collaboration with the SciDAC-4 HEP Data Analytics program.
- Time to results brought from 6 months on FermiGrid and OpenScience grid down to a few days/weeks on NERSC machines.

Sensitivity optimization

- Measurement sensitivity can be increased by splitting:
 - $\nu_{\mu} I \overline{\nu_{\mu}}$ events into quartiles depending

on their energy resolution.

- $v_e I \overline{v_e}$ events into levels of confidence

in the event classifier.

GENIE Tune

Used GENIE 3.0.6 in NOvA 2020 analysis: choose the most theory-driven models and returne some parameters to better match ND data.

Process	Model
Quasielastic	Valencia 1p1h
Form Factor	Z-expansion
Multi-nucleon	Valencia 2p2h
Resonance	Berger-Sehgal
DIS	Bodek-Yang
Final State Int.	hN semi-classical cascade

GENIE Tune

• Largest **tunes**:

- Meson Exchange Current (MEC or 2p2h): tune to ND data
- Final State Interactions (FSI):
 use external π-scattering data

Data driven corrections

- Data-driven techniques lead to small adjustments to the ν_{μ} CC, ν_{e} CC and NC rates.

FD v_{μ} data

FD v_e data

Cosmic bkg

Wrong sign

1.6

2.3

p_t extrapolation

- ND/FD containment difference.
- Split ND samples into 3 bins of transverse momentum and extrapolate separately.
- Reduce cross-section uncertainty by 30%. Overall systematics reduction is 10%.

NOvA Preliminary

v Beam

Systematics

- Detector calibration: will be improved by the ongoing test beam program at FNAL.
- Neutron uncertainty: cover discrepancies observed in low-energy v data.
 Ongoing work to improve our simulation and understanding of neutrons in the detectors.
- Neutrino cross-sections: use own tuning but still noticeable nuclear effects (RPA, MEC).

Systematics

Without the ND to FD extrapolation technique, cross-section and flux uncertainties would be dominant, especially for the appearance analysis which is extremely rate sensitive.

