

Matthieu Licciardi On behalf of the STEREO and PROSPECT collaborations

The "5-MeV bump"

Shape distortion in reactor antineutrino spectra

- Excess of events (~10%) around 5 MeV w.r.t. reference model (Huber-Mueller)
- > First observation in 2016, now seen by all experiments @ commercial reactors
- > Unknown origin. New physics ? Energy calibration ? Incomplete models ?
- > Fuel is Lowly Enriched in ²³⁵U (LEU) $\rightarrow \overline{v}_{a}$ from several isotopes ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

STEREO and PROSPECT experiments

- > Leading experiments at research reactors :
 - Fuel is **H**ighly Enriched in 235 **U** (HEU) : pure 235 **U** neutrino flux (>99%)
 - \rightarrow disentangle isotope contributions
 - · Less statistics (by a factor 10^{-1} – 10^{-2})

 \rightarrow interest for a combined measurement

The STEREO detector

JINST 13 (2019) 07, P07009 www.stereo-experiment.org

Gamma-Catcher: unloaded liquid scintillator Target: Gd-loaded liquid scintillator

The PROSPECT detector

Experimental site (HFIR, ORNL):

- · No overburden
- Backgrounds: ambient neutrons, cosmic rays

Detector design:

- $\cdot \approx 10$ m to reactor core
- Liquid Scintillator + ⁶Li
- Pulse shape discrimination
- $\cdot \approx 500 \text{ v/day}$

NIM A922 (2019) 287-309 https://prospect.yale.edu

Analysis principle

Detection = inverse beta decay (IBD) → time and space coincidence

1. Prompt signal: e⁺ annihilation

2. Delayed signal: neutron capture on Gd/Li nucleus

Example of correlated background: spallation neutron

Pulse Shape Discrimination on prompt signals + combination of reactor-on and -off data

Energy reconstruction : example of STEREO

Crucial for spectral measurement !

Is E_{rec}^{MC} consistent with E_{rec}^{Data}?

>1 Radioactive sources

· in each cell, at 5 different heights

>2¹²B spectrum

• Continuous spectrum, $Q_{\beta} = 13.4 \text{ MeV}$

>3 Global fit

- · Tested models:
 - polynomial (order 2-5)
 - Kernel density estimation

 \rightarrow Data/MC agree with 1% accuracy

STEREO prompt energy measurement

- Significant bump is observed on the ²³⁵U spectrum:
 - · free Gaussian fit gives $A = 10.1 \pm 2.9 \%$, compatible with LEU observations
- Measurement is statistically limited
- Unfolded spectrum available for reference on HEPData doi.org/10.17182/hepdata.99805

Matthieu Licciardi – EPS-HEP, neutrino session – July 2021

PROSPECT prompt energy measurement

- > Significant bump is observed on the ²³⁵U spectrum:
 - Amplitude relative to Daya-Bay measurement is $A/A_{DB} = 0.84 \pm 0.39$
- Measurement is statistically limited

6 STEREO Prompt Energy [MeV]

Mapped PROSPECT Spectrum

STEREO Spectrum

5

STEREO/PROSPECT compatibility

Must be compared in the same energy space

- $R_{\rm map} = R_{\rm ST} \cdot R_{\rm PR}^{-1}$ PROSPECT mapped into STEREO space:
- Comparison free of unfolding biases

Rate [Day⁻¹]

30

25

20

15

10

5

0

2

3

4

(free normalization fitted)

Joint unfolding:

- > Deconvolve experimental effects to provide a reference spectrum vs E
- Recovery of lost information requires regularized techniques
- > Two independent methods used
 - Tikhonov regularization
 - · Wiener-SVD

→ validated frameworks giving consistent results

 Filter matrices encoding unfolding biases are provided

11/13

Joint unfolded ²³⁵U spectrum

arXiv: 2107.03371

- Combined antineutrino spectrum
- Model comparisons use filter matrix A_c

$$\chi^{2} = (A_{C} \cdot M - \Phi^{\text{U5}})^{T} V_{\Phi}^{-1} (A_{C} \cdot M - \Phi^{\text{U5}})$$

 \rightarrow vs Huber model : $\chi^2 = 30.8/21$ (p-value : 0.07)

- > Event excess around 5-6 MeV:
 - \cdot 2.4 σ significance
 - · free Gaussian fit → A = 9.9 ± 3.3 %

→ Bump in ²³⁵U independent of other LEU isotopes

 Compatible with Daya-Bay ²³⁵U spectrum Chin.Phys.C 45 (2021) 073001 (χ² = 21.0/21)

"5 MeV bump" is still mysterious, but contribution of ²³⁵U has been investigated by STEREO and PROSPECT → arXiv: 2107.03371 ←

- STEREO and PROSPECT datasets are statistically compatible
- Antineutrino spectra have been successfully combined and unfolded, providing a robust ²³⁵U spectrum to the community
- > Filter matrix allows comparisons with ²³⁵U models free of unfolding biases
- Excess is observed for ²³⁵U in 5-6 MeV region (2.4σ) without information on any other fuel isotope
 - ²³⁵U amplitude ≈10 % → can't explain 5-MeV bump on its own, other isotopes involved

More data is being analyzed, stay tuned !

13/13

Thank you for your attention !

Supplementary slides

Possible origins of the shape anomaly

• Non linearity in E reconstruction

[Mention et al, PhysLettB 773:307-312 (2017)]

• New physics process?

 ${
m ^{13}C}(\overline{
u},\overline{
u}'n){
m ^{12}C^*}~~{
m via}~{
m a}~{
m new}~{
m vector}~{
m boson}~{
m X}$

[Berryman et al, PRD 99, 055045 (2019)]

16/21

Possible origins of the shape anomaly

- Non linearity in E reconstruction
- Issue in nuclear models

 $S(E_{\nu}) = \frac{W_{th}}{\sum_{i} (f_i/F)e_i} \sum_{i} (f_i/F)S_i(E_{\nu})$

Relies on nuclear databases for fission fractions f_i

• New physics process?

 ${
m ^{13}C}(\overline{
u},\overline{
u}'n){
m ^{12}C^*}~~{
m via}~{
m a}~{
m new}~{
m vector}~{
m boson}~{
m X}$

[Berryman et al, PRD 99, 055045 (2019)]

17/21

18/21

Adaptation of Singular Value Decomposition (SVD) method

- SVD decomposition of the response matrix $R = U \cdot D \cdot V^T$
- Standard unfolding $\hat{s} = (R^T R)^{-1} \cdot R^T \cdot M$ becomes $\hat{s} = V \cdot D^{-1} \cdot U^T \cdot M$ Insertion of a filter to cancel small values of D being inverted $F_{ii} = \frac{d_i^2}{d_i^2 + \tau}$
- (τ : arbitrary tunable parameter)

Wiener filter:

• F is replaced by the following filter W_{ik} =

$$= \frac{d_i^2 \cdot \left(\sum_j V_{ij}^T \cdot \overline{s}_j\right)^2}{d_i^2 \cdot \left[\left(\sum_j V_{ij}^T \cdot \overline{s}_j\right)^2 + 1\right]} \cdot \delta_{ik}$$
signal noise (pre-whitened)

• Generalization: use $1^{st}/2^{nd}$ discrete derivative of signal instead (using C_k matrices) $C_1 = \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 \\ 0 & 0 & 0 & \dots & 0 & -1 \end{bmatrix} C_2 = \begin{bmatrix} -1+\epsilon & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & -2+\epsilon & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -1+\epsilon \end{bmatrix}$

Tikhonov unfolding

Find the solution of the following χ^2

$$\chi^{2}\left(\beta, \Phi^{\mathrm{U5}}\right) = \boldsymbol{\Delta}\left(\beta, \Phi^{\mathrm{U5}}\right)^{T} V^{-1} \boldsymbol{\Delta}\left(\beta, \Phi^{\mathrm{U5}}\right) + \mathcal{R}_{1}\left(\Phi^{\mathrm{U5}}\right)$$

$$\boldsymbol{\Delta}\left(\beta, \Phi^{\mathrm{U5}}\right) = D^{\mathrm{JNT}} - R_{\beta} \Phi^{\mathrm{U5}}$$

$$\boldsymbol{\Delta}\left(\beta, \Phi^{\mathrm{U5}}\right) = D^{\mathrm{JNT}} - R_{\beta} \Phi^{\mathrm{U5}}$$

$$\boldsymbol{V} = \begin{pmatrix} V^{\mathrm{PR}} & 0\\ 0 & V^{\mathrm{ST}} \end{pmatrix}$$

$$\boldsymbol{V} = \begin{pmatrix} V^{\mathrm{PR}} & 0\\ 0 & V^{\mathrm{ST}} \end{pmatrix}$$

$$\boldsymbol{R}_{1}\left(\Phi^{\mathrm{U5}}\right) = r \sum_{i} \left(\frac{\Phi^{\mathrm{U5}}_{i+1}}{\Phi^{\mathrm{H}}_{i+1}} - \frac{\Phi^{\mathrm{U5}}_{i}}{\Phi^{\mathrm{H}}_{i}}\right)^{2}$$

$$\boldsymbol{H} = \left(\frac{D^{\mathrm{PR}}}{D^{\mathrm{ST}}}\right)$$

$$\boldsymbol{R}_{\beta} = \begin{pmatrix} \beta \cdot R^{\mathrm{PR}}\\ R^{\mathrm{ST}} \end{pmatrix}$$

$$\boldsymbol{R}_{\beta} = \begin{pmatrix} \beta \cdot R^{\mathrm{PR}}\\ R^{\mathrm{ST}} \end{pmatrix}$$

$$\boldsymbol{R}_{\beta} = \left(\frac{\beta \cdot R^{\mathrm{PR}}}{R^{\mathrm{ST}}}\right)$$

Analytical solution : $\Phi^{U5} = H_{r,\beta} \cdot D^{JNT}$

$$H_{r,\beta} = \left[1 + r(R_{\beta}^{T}V^{-1}R_{\beta})^{-1}C_{T}\right]^{-1} \left(R_{\beta}^{T}V^{-1}R_{\beta}\right)^{-1} R_{\beta}^{T}V^{-1}$$

Filter matrix

Unfolding matrix (depends on regularization parameter λ if any) $\hat{s} = H(\lambda) \cdot D$

The unfolding matrix may be factorized as → all reg. effects contained in filter matrix

$$H(\lambda) = A_{c}(\lambda) \cdot H(0)$$

Filter matrix Un-regularized unfolding

How to use?
Comparison of unfolded spectrum
$$\hat{s}$$
 with model \bar{s}
 \Rightarrow pass model through filter matrix (A_c) before comparison
 $\chi^2 = (A_C \bar{s} - \hat{s})^T V_{\hat{s}}^{-1} (A_C \bar{s} - \hat{s}) = (\bar{s} - \hat{s}_{unfilt})^T V_{\hat{s}_{unfilt}}^{-1} (\bar{s} - \hat{s}_{unfilt})$
Filtered model Unfolded spectrum
(filtered)

Comparison in "filtered space"

Comparison in "unfiltered space"

 \rightarrow comparison **as if** there was no regularisation

Search for sterile neutrinos with STEREO

Model-free sterile neutrino search

Thanks to a segmented detector

Free model parameters ϕi in χ^2 to absorb distortions common to all cells \rightarrow only cell-to-cell dependence remains \rightarrow remove model dependence

$$\chi^{2} = \sum_{l=1}^{N_{\text{cells}}} \sum_{i=1}^{N_{\text{Ebins}}} \left(\frac{A_{l,i} - \phi_{i}M_{l,i}}{\sigma_{l,i}} \right)^{2} + \text{pull terms}$$

at > 99% CL