Geoneutrinos spectroscopy with Borexino experiment

Dr. Davide Basilico EPS-HEP 2021 University of Milano and INFN Milano

Istituto Nazionale di Fisica Nucleare

UNIVERSITÀ DEGLI STUDI DI MILANO

Outline

- 1. Geoneutrinos
- 2. Borexino
- 3. Analysis and results

What are geoneutrinos?

- Direct messengers of the abundances of radioactive elements
- Measuring their flux and spectrum → understand the radiogenic contribution to the total heat balance of the Earth.
- Discriminate Earth models (cosmochemical, geochemical, geodynamical etc...)

What are geoneutrinos?

$${}^{238}\text{U} \rightarrow {}^{206}\text{Pb} + 8\alpha + 8e^{-} + 6\bar{\nu}_{e} + 51.7 \text{ MeV}$$

$${}^{235}\text{U} \rightarrow {}^{207}\text{Pb} + 7\alpha + 4e^{-} + 4\bar{\nu}_{e} + 46.4 \text{ MeV}$$

$${}^{232}\text{Th} \rightarrow {}^{208}\text{Pb} + 6\alpha + 4e^{-} + 4\bar{\nu}_{e} + 42.7 \text{ MeV}$$

$${}^{40}\text{K} \rightarrow {}^{40}\text{Ca} + e^{-} + \bar{\nu}_{e} + 1.31 \text{ MeV} (89.3\%)$$

Geoneutrino flux ~ 10^6 cm⁻² s⁻¹ (Solar nu flux ~ 10^{10} cm⁻² s⁻¹)

- Direct messengers of the abundances of radioactive elements
- Measuring their flux and spectrum → understand the radiogenic contribution to the total heat balance of the Earth.
- Discriminate Earth models (cosmochemical, geochemical, geodynamical etc...)

How to detect geoneutrinos?

Low interaction rates: $\sigma \sim 10^{-42} \text{ cm}^2$ @ MeV Expected ~150 geoneutrino events for ~2000 ton x y exposure

- Large volume detectors
- Construction materials \rightarrow high radiopurity

Borexino experiment in Gran Sasso, Italy

- Extreme radiopurity for solar neutrinos spectroscopy (main goal)
 - \rightarrow But also able to measure anti-neutrinos (IBD reaction)!
- Underground lab \rightarrow shielding cosmic rays radiation
- No nuclear power plant in Italy \rightarrow smaller background wrt KamLAND

Gran Sasso National Laboratory (Italy)

Borexino detector

- DAQ started in 2007
- Main analysis: solar neutrinos spectroscopy (see X. Ding talk about CNO detection)
- 300 ton of ultra-pure liquid scintillator
- Graded shielding: buffer liquid and Gran Sasso → low radioactivity: 10⁻²⁰ g/g ²³⁸U, 10⁻¹⁹ g/g ²³²Th
- 2000 PMTs to measure:
 - \circ positions \rightarrow photons time arrival
 - \circ energy \rightarrow number of photons detected

Borexino detector

Anti-neutrinos detection

Prompt signal (e+):

- e^+ scintillation + annihilation (2 γ)
- $E_{prompt} \approx E_{geoneutrino} 0.782 \text{ MeV}$

Delayed signal (neutron capture on H):

• $E_{delayed} \approx 2.2 \text{ MeV}$ < $\Delta t > \sim 254 \text{ }\mu\text{s}$

Energy threshold: 1.8 MeV σ ~10⁻⁴² cm² @MeV (~100x more than scattering)

Coincidence in time / space / energy between prompt and delayed guarantees a **very high signal/background ratio**

Geoneutrinos energy spectrum

Local and global geological information + flavor oscillation (<Pee> ~ 0.55) + detection threshold

Reactor backgrounds

- Overlap between geoneutrino and reactor antineutrino signals (up to 10 MeV).
- 98% European ones
- Estimation of the exp. events from the spectral components of ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu

Non antineutrino backgrounds

1) Cosmogenic-muon related:

- ⁹Li and ⁸He: β^{-} + n pair;
- Fast neutrons (scattered protons as prompt signal)

2) Accidental coincidences

3) Internal radioactivity: (α ,n) and (γ ,n) reactions Scattered protons as prompt, ¹²C(4.4 MeV) and ¹⁶O (6.1 MeV)

Background type	Events
⁹ Li background	3.6 ± 1.0
Untagged muons	0.023 ± 0.007
Fast n's (μ in WT)	< 0.013
Fast n's (μ in rock)	<1.43
Accidental coincidences	3.846 ± 0.017
(α, n) in scintillator	0.81 ± 0.13
(α, n) in buffer	< 2.6
(γ, n)	< 0.34
Fission in PMTs	< 0.057
$^{214}\text{Bi} - ^{214}\text{Po}$	0.003 ± 0.001
• Total	8.28 ± 1.01

Selection cuts

Spectral fit, Th/U ratio constrained

154 golden candidates Dec 2007 – Apr 2019 Unbinned likelihood fit

• $S(Th)/S(U) = 0.27 \rightarrow chondritic Th/U mass ratio of 3.9$

→ energy scale: 500 p.e. ~ 1 MeV

- Resulting number of geoneutrinos $52.6_{-8.6}^{+9.4}$ (stat)_{-2.1}^{+2.7}(sys), precision -17.2+18.3%
- Precision improved of a factor 2 wrt Borexino 2015 analysis
- In agreement with the fit with Th/U fixed

Spectral fit, mantle signal

Local knowledge of litosphere \rightarrow its contribution constrained in the spectral fit, (28.8 ± 5.6) events

No mantle signal hypothesis rejected at 99.0% C.L. ,
$$S_{mantle} = 21.2^{+9.7}_{-9.0}$$
 TNU

TNU (terrestrial neutrino unit): 1 antineutrino event detected via IBD over 1 y by a detector with 100% detection efficiency containing 10³² free target protons

Radiogenic heat

Conclusions

Real-time spectroscopy of geoneutrinos by Borexino, 2007-2019 data

• Analysis techniques and data selection improved

Main results:

- 1. Precision improved of a factor 2 wrt Borexino 2015 analysis
- 2. Null mantle signal excluded at 99.0% C.L.
- 3. Agreement with geological prediction, tension against models predicting low U and Th abundances
- 4. Estimates of mantle radiogenic heat

Geoneutrinos are confirmed as a unique interdisciplinary tool to study the Earth interior layers.

Chondrited

- Chondrites are primitive, undifferentiated meteorites, a collection of the earliest formed material in the solar system.
- Studies of meteorites add much to our understanding of the age of the solar system and the nature of the building blocks that makes up the planets.
- Mixture of silicate and metal materials in proportions similar to that found in the terrestrial planet