Experimental Evidence of neutrinos produced in the CNO fusion cycle in the Sun with Borexino

Physics department, Princeton University, Princeton, NJ 08544, USA

Xuefeng Ding on behalf of Borexino Collaboration

EPS-HEP 2021 conference 2021.07.26 3:55 pm

Borexino Collaboration

What is the CNO-cycle and Why

Two mechanisms how Sun convert hydrogen to helium

- CNO-cycle: one of two $4H = >^4He$ processes. No exp. proof until this work.
- SSM-HZ (helioseismology) vs LZ (spectroscopy): controversy about solar metallicity
- CNO neutrinos: can be used to mesuare C&N abundances

Borexino detector

Sensitivity of Borexino to CNO neutrinos

- ²¹⁰Bi and CNO shapes very **similar**; ²¹⁰Bi fit results strongly **correlated** with CNO v
- Major sensitivity comes from counting analysis in ROI

ROI 0.8—1 MeV: 90% ²¹⁰Bi+pep + CNO; pep constrained according to global fit results (~1.4%)

Strategy to measure ²¹⁰Bi

$R(^{210}Bi) = "R(^{210}Po)"$

Extended Data Fig. 5 | The low polonium field in the Borexino scintillator. Three-dimensional view of the ²¹⁰Po activity inside the entire nylon vessel (see colour code). The innermost blue region contains the LPoF (black grid). The white grid is the software-defined fiducial volume. a.u., arbitrary units.

Challenge: migrated ²¹⁰Po

• Extra ²¹⁰Po brought into FV by convection & migration

$R(^{210}Bi) < R(^{210}Po) +$ migrated ²¹⁰Po

Efforts to stabilize detector thermal condition

First Direct Experimental Evidence of CNO neutrinos, BOREXINO, 2020, hep-ex/2006.15115

Experimental Evidence of neutrinos produced in the CNO fusion cycle in the Sun with Borexino, Xuefeng Ding

	N1
	S1
	N2
	S 2
	N3
	S 3
	N4
	S4
—	N5
	S5
	N6
	S6
	N7
	S7
_	

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment Volume 964, 1 June 2020, 163801

Fluid-dynamics and transport of ²¹⁰ Po in the scintillator Borexino detector: A numerical analysis

V. Di Marcello ^a $\stackrel{ imes}{\sim}$ ⊠, D. Bravo-Berguño ^{b, 1}, R. Mereu ^c, F. Calaprice ^d, A. Di Giacinto ^a, A. Di Ludovico ^d, Aldo Ianni ^a, Andrea Ianni ^d, N. Rossi ^a, L. Pietrofaccia ^d

- Double layer of mineral wool for insulation & Active Temperature Control System (ATCS) (2014-2016)
- Temperature Probes (2014—2016)
- Fluid dynamical simulations
- Hall C Temperature stabilization (2019)

Low Polonium Field (LPoF) analysis

Experimental Evidence of neutrinos produced in the CNO fusion cycle in the Sun with Borexino, Xuefeng Ding

- 1. Align minimum vertical position
- 2. Merge aligned dataset
- 3. Fit merged data with parabolic func.

Result of LPoF analysis

²¹⁰Bi homogeneity systematics

- R(²¹⁰Bi) constraint based on LPoF (20t)
- Extrapolate to "pep FV" (70t)
- Overall systematics: 0.78 cpd/100t

²¹⁰Pb / ²¹⁰Bi homogeneity: mixing arguments

- Before insulation, convection is strong.
- ²¹⁰Pb / ²¹⁰Bi should be totally mixed according to simulation.

The Multivariate fit analysis

- pep-v constrained; ²¹⁰Bi upper limit imposed
- CNO v: 7.2-1.7+2.9 (stat.) cpd/100t

Maximize likelihood built on distributions of event energy and position

Evaluation of systematic uncertainty

Look at the width Monte Carlo \rightarrow simulate distorted datasets, -> Get sigma expected stat fit with un-distorted PDFs and sigma sys v(pp) Distortion Fits v(7Be) fit with p.d.f. without distortion bkg.

- Fit condition (negligible)
- ¹¹C and ²¹⁰Bi spectrum shapes
- CNO: 7.2 -1.7+3.0 (stat.+sys.) cpd/100t

• Energy response function (energy scale, non-linearity, non-uniformity)

Test against no-CNO hypothesis

Experimental Evidence of neutrinos produced in the CNO fusion cycle in the Sun with Borexino, Xuefeng Ding

- Profile likelihood as the test statistic
- Use toy-MC method to get the distribution of test statistic. Evaluated p-value has statistical uncertainty.
- Simulated & Fitted 14million dataset
- p-value < 5 σ @ 99% C. L.

- Count events in ROI (Yellow band)
- Subtract all backgrounds, rest is CNO
- $R(CNO) = 5.6 \pm 1.6$ (stat.+sys.) cpd/100t (~3.5 σ)
- Consistent with Full MV fit analysis

Discrimination against SSM-LZ

Expected CNO neutrino rate in Borexino

	m B16(AGSS09)-LZ m cpd/100 ton	B16(GS98)-HZ cpd/100 ton	Solar ν
	132.2 ± 1.4	131.1 ± 1.4	pp
Bor	43.7 ± 2.5	47.9 ± 2.8	$^{7}\mathrm{Be}$
	2.78 ± 0.04	2.74 ± 0.04	pep
• SSN			
CON	3.52 ± 0.52	4.92 ± 0.78	CNO

npare pp, ⁷Be, CNO, ⁸B fluxes measured by exino with SSM-LZ in χ^2

M-LZ rejected @ 2.1 σ

- CNO neutrino flux: 7.0_{-2.0}+3.0 (stat.+sys.) x 10⁸ cm⁻²s⁻¹
- Rejection to SSM-LZ: 2.1 σ .

• No-CNO hypothesis rejected at 5 σ significance.

Backup

The confidence interval — Multivariate fit

- Scan the test statistic over the CNO rate q(CNO).
- Convert q(CNO) to the P.D.F. of CNO rate according to $p = C^* \exp(LL)$.
- Get 68% quantile as the 1 sigma Confidence Interval (C.I.)
- Smear the P.D.F. of CNO with systematic uncertainty ($_{-0.5}$ +0.6 cpd/100t)
- Get 68% quantile of the smeared P.D.F. as 1 sigma C.I. including systematic uncertainty.

The Statistical analysis

- The statistical analysis has two objectives
 - Evaluate the confidence interval (counting + MV fit)
 - Evaluate the discovery significance (hypothesis test)

The systematic uncertainty

fit with un-distorted PDFs

- Using the Cousins & Highland, or hybrid frequentist-Bayesian method.

 - Simulate distorted datasets and fit with un-distorted PDF \bullet
 - Subtract quadratically width of distribution of results with 0-systemics.

 Define list of known inaccuracy type and magnitude (energy function, LY 0.23%) non-uniformity 0.28% and NL 0.4%; ¹¹C deformation 2.3%; ²¹⁰Bi shape 18%)

Use CNO to measure C & N abundances

Sensitivity to neutrinos from the solar CNO cycle in Borexino, arXiv 2005.12829

- pp-chain solar neutrino fluxes depend on solar core temperature
- CNO cycle solar neutrino fluxes depend on temperature + C & N abundances.
 - Combine two to measurement C & N abundances directly

Use CNO to do hypothesis test

B16(GS98)-HZ cpd/100 ton	B16(AGSS09)-LZ cpd/100 ton	Borexino Results cpd/100 ton
131.1 ± 1.4	132.2 ± 1.4	$134 \pm 10^{+6}_{-10}$
47.9 ± 2.8	43.7 ± 2.5	$48.3 \pm 1.1^{+0.4}_{-0.7}$
2.74 ± 0.04	2.78 ± 0.04	$2.43 \pm 0.36^{+0.15}_{-0.22}$ (HZ)
		$2.65 \pm 0.36^{+0.15}_{-0.24} \ (\mathrm{LZ})$
4.92 ± 0.78	3.52 ± 0.52	< 8.1 (95% C.L.)

Standard hypothesis test

Future experiments

Jingping Neutrino Experiment

Experimental Evidence of neutrinos produced in the CNO fusion cycle in the Sun with Borexino, Xuefeng Ding

- SNO+: existing, deep
- JPNE: directionality
- LAr/LXe: no ¹¹C, high energy resolution

Connection to cryogenics, purification, data acquisition

DARWIN

²¹⁰Bi homogeneity systematics based on Obi-wan

0.51 cpd/100t

Overall ²¹⁰Bi spatial uniformity systematics: 0.78 cpd/100t

0.59 cpd/100t

