# **SMEFT beyond** $\mathcal{O}(1/\Lambda^2)$

Adam Martin (amarti41@nd.edu)



Based on: 2001.01453 [Helset, AM, Trott] 2007.00565 [Hays, Helset, AM, Trott] 2102.02819 [Corbett, Helset, AM, Trott] 2107.07470 [Corbett, AM, Trott]

EPS, July 28th, 2021

# In SMEFT framework



#### What's the impact from $1/\Lambda^4$ corrections?

SMEFT Warsaw basis:  $\mathcal{O}(60)$  operators at dim-6  $\mathcal{O}(1000)$  operators at dim-8

# Higher order effects so should be small... but

- they are a form of uncertainty; 'theory error' on extracted scale  $\Lambda$
- there are instances where interference term isn't present or is suppressed, e.g. helicity mismatch between SM and dim-6
- faster growth with energy,  $E^4$  vs.  $E^2$  : increasingly important when looking at high energy (e.g. tails of some kinematic distribution)

How do we proceed?

Is there a simple estimate, i.e (dim-6)<sup>2</sup> that works? Do we need to do case by case?

# **Geometric SMEFT:**

#### [2001.01453]

A reorganization of the SMEFT operators (= a basis), where 2 and 3-particle interactions are sensitive to the minimal number of operators



With fewer operators around, can actually do complete  $1/\Lambda^4$  calculations for certain processes.

Use those processes as simple laboratories for truncation error studies

[see talk by T. Corbett too!]

## **SMEFT operators:**

have the form  $D^a H^b \bar{\psi}^c \psi^d F^x$ 

For operator affecting 2,3-pt vertices: restrictions

1.) Can't have too many fields

e.g.  $(DH^{\dagger})(DH)(DH^{\dagger})(DH) \rightarrow 4^{+}$  fields, can't contribute

1/ 1

2.) Momentum on fields other than H is 'trivial'

e.g. 
$$D_{\mu}H(D^{\mu}\bar{\psi})\psi$$
  
 $\sim (p_{H}\cdot p_{\bar{\psi}})H\bar{\psi}\psi$   
 $\sim \left(\frac{m_{\psi}^{2}-m_{H}^{2}-m_{\bar{\psi}}^{2}}{2}\right)H\bar{\psi}\psi$   
 $p_{H}+p_{\bar{\psi}}+p_{\psi}=0$ 

Just changes coefficient of  $H\bar{\psi}\psi$ : <u>not</u> a new operator structure

#### Allowed 2, 3-pt structures:

[+ versions with G<sup>A</sup>]

$$\begin{split} h_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\mu}\phi)^{J}, \quad g_{AB}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\mu\nu} \\ k^{A}_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\nu}\phi)^{J}\mathcal{W}^{\mu\nu}_{A}, \quad f_{ABC}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\nu\rho}\mathcal{W}^{C,\mu}_{\rho}, \\ Y(\phi)\bar{\psi}_{1}\psi_{2}, \quad L_{I,A}(\phi)\bar{\psi}_{1}\gamma^{\mu}\tau_{A}\psi_{2}(D_{\mu}\phi)^{I}, \quad d_{A}(\phi)\bar{\psi}_{1}\sigma^{\mu\nu}\psi_{2}\mathcal{W}^{A}_{\mu\nu}, \\ \text{functions of } H^{\dagger}H/\Lambda^{2} \equiv \phi^{2} \end{split}$$

Functions can be figured out order by order, **# of structures saturates** 

Ex.) 
$$h_{IJ} = \left[ 1 + \phi^2 \frac{C_{H\square}^{(6)}}{H\square} + \sum_{n=0}^{\infty} \left( \frac{\phi^2}{2} \right)^{n+2} \left( \frac{C_{HD}^{(8+2n)}}{C_{HD}} - \frac{C_{H,D2}^{(8+2n)}}{D} \right) \right] \delta_{IJ} + \frac{\Gamma_{A,J}^I \phi_K \Gamma_{A,L}^K \phi^L}{2} \left( \frac{C_{HD}^{(6)}}{2} + \sum_{n=0}^{\infty} \left( \frac{\phi^2}{2} \right)^{n+1} C_{H,D2}^{(8+2n)} \right) \right]$$
  
Dim-6 : 2 terms Dim-8+: 2 terms

Flat 'metric' in SM, curved in SMEFT. Geometric perspective -> geoSMEFT

## geoSMEFT at work:

SMEFT phenomenology for processes involving 2, 3-pt interactions now doable to any order in  $v^2/\Lambda^2$ 

Specifically,  $\mathcal{O}(1/\Lambda^4)$  easily calculated for a large set of processes



e.g) 
$$h \to \gamma \gamma$$
  
defining:  $\langle h | \gamma \gamma \rangle_{\mathscr{L}^{(6)}} = \left[ \frac{g_2^2 \tilde{C}_{HB}^{(6)} + g_1^2 \tilde{C}_{HW}^{(6)} - g_1 g_2 \tilde{C}_{HWB}^{(6)}}{(g_1^2 + g_2^2) \bar{v}_T} \right]$ 
 $\tilde{C}^{(6)} = C^{(6)} \frac{v_T^2}{\Lambda^2}$   
 $\tilde{C}^{(8)} = C^{(8)} \frac{v_T^4}{\Lambda^4}$ 

(dim-6)<sup>2</sup> estimate: 
$$\left|\mathscr{A}_{SM}^{h\gamma\gamma}\right|^{2} + 2 \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right) \langle h | \gamma\gamma \rangle_{\mathscr{L}^{(6)}} + \langle h | \gamma\gamma \rangle_{\mathscr{L}^{(6)}}^{2}$$

Full 
$$\mathcal{O}(1/\Lambda^4)$$
 result:  

$$\begin{bmatrix} \tilde{\mathcal{C}}_{H\square}^{(6)}, \tilde{\mathcal{C}}_{HD}^{(8)}, \tilde{\mathcal{C}}_{HD}^{(8)} \\ \#^{h\gamma\gamma} \end{bmatrix}^2 + 2 \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right) \left(1 + \left\langle\sqrt{h}^{44}\right\rangle_{\mathscr{L}^{(6)}}\right) \langle h|\gamma\gamma\rangle_{\mathscr{L}^{(6)}} + \left(1 + 4\bar{v}_T \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right)\right) \left(\langle h|\gamma\gamma\rangle_{\mathscr{L}^{(6)}}\right)^2 \\
+ 2 \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right) \left[\frac{g_2^2 \tilde{\mathcal{C}}_{HB}^{(8)} + g_1^2 \left(\tilde{\mathcal{C}}_{HW}^{(8)} - \tilde{\mathcal{C}}_{HW,2}^{(8)}\right) - g_1 g_2 \tilde{\mathcal{C}}_{HWB}^{(8)}}{(g_1^2 + g_2^2) \bar{v}_T}\right]$$

e.g)  $h \rightarrow \gamma \gamma$ : Quantify effect by randomly drawing coefficients and comparing dim-6, (dim-6)<sup>2</sup> and full  $1/\Lambda^4$  result: for `tree' operators:  $\mathcal{O}(1)$ , `loop' operators:  $\mathcal{O}(0.01)$ 

[Arzt'93], [Einhorn, Wudka '13], [Craig et al '20]



fixing  $1/\Lambda^2$ ,  $(dim-6)^2$ result: contours show range of effects once full  $1/\Lambda^4$  effects are included

e.g)  $h \rightarrow \gamma \gamma$ : Quantify effect by randomly drawing coefficients and comparing dim-6, (dim-6)<sup>2</sup> and full  $1/\Lambda^4$  result: for `tree' operators:  $\mathcal{O}(1)$ , `loop' operators:  $\mathcal{O}(0.01)$ 

ex.) (#++)2 X ~~ X ~~

ex.) (HtH) Xm Xm



e.g.)  $Z \rightarrow \ell^+ \ell^-$ : Quantify effect by randomly drawing coefficients and comparing dim-6, (dim-6)<sup>2</sup> and full  $1/\Lambda^4$  result: for `tree' operators:  $\mathcal{O}(1)$ , `loop' operators:  $\mathcal{O}(0.01)$ 



Now tree-level operators present for both dim-6 and dim-8

smaller impact,  $\mathcal{O}(\%)$  at  $\Lambda$  = TeV

~ (dim6)<sup>2</sup> piece not a bad estimate

# Combining SM loops with $\mathcal{O}(1/\Lambda^4)$

# Can combine with $\mathcal{O}(1/\Lambda^2) \times SM$ loop $\frac{\Gamma_{SMEFT}^{\hat{m}_W}}{\Gamma_{SM}^{\hat{m}_W}} \simeq 1 - 788 f_1^{\hat{m}_W}, \qquad \mathcal{O}(1/\Lambda^2)$ $+ 394^{2} (f_{1}^{\hat{m}_{W}})^{2} - 351 (\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)}) f_{3}^{\hat{m}_{W}} + 2228 \,\delta G_{F}^{(6)} f_{1}^{\hat{m}_{W}},$ $+ 979 \,\tilde{C}_{HD}^{(6)} (\tilde{C}_{HB}^{(6)} + 0.80 \,\,\tilde{C}_{HW}^{(6)} - 1.02 \,\tilde{C}_{HWB}^{(6)}) - 788 \left[ \left( \tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{4} \right) \,f_{1}^{\hat{m}_{W}} + f_{2}^{\hat{m}_{W}} \right],$ $\mathcal{O}(1/\Lambda^4)$ $+2283\,\tilde{C}_{HWB}^{(6)}(\tilde{C}_{HB}^{(6)}+0.66\,\tilde{C}_{HW}^{(6)}-0.88\,\tilde{C}_{HWB}^{(6)})-1224\,(f_1^{\hat{m}_W})^2,$ $-117 \,\tilde{C}_{HB}^{(6)} - 23 \,\tilde{C}_{HW}^{(6)} + \left[ 51 + 2\log\left(\frac{\hat{m}_h^2}{\Lambda^2}\right) \right] \,\tilde{C}_{HWB}^{(6)} + \left[ -0.55 + 3.6\log\left(\frac{\hat{m}_h^2}{\Lambda^2}\right) \right] \,\tilde{C}_W^{(6)},$ $+ \left[27 - 28 \log\left(\frac{\hat{m}_h^2}{\Lambda^2}\right)\right] \operatorname{Re} \tilde{C}_{uB}^{(6)} + 5.5 \operatorname{Re} \tilde{C}_{uH}^{(6)} + 2 \tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{2},$ $-3.2\,\tilde{C}_{HD}^{(6)}-7.5\,\tilde{C}_{HWB}^{(6)}-3\,\sqrt{2}\,\delta G_F^{(6)}.$ $\mathcal{O}(1/\Lambda^2 \times \text{loop})$

#### where

$$\begin{split} \delta G_F^{(6)} &= \frac{1}{\sqrt{2}} \left( \tilde{C}_{Hl}^{(3)} + \tilde{C}_{Hl}^{(3)} - \frac{1}{2} (\tilde{C}'_{\mu e e \mu} + \tilde{C}'_{e \mu \mu e}) \right), \\ f_1^{\hat{m}_W} &= \left[ \tilde{C}_{HB}^{(6)} + 0.29 \; \tilde{C}_{HW}^{(6)} - 0.54 \; \tilde{C}_{HWB}^{(6)} \right], \\ f_2^{\hat{m}_W} &= \left[ \tilde{C}_{HB}^{(8)} + 0.29 \; (\tilde{C}_{HW}^{(8)} + \tilde{C}_{HW,2}^{(8)}) - 0.54 \; \tilde{C}_{HWB}^{(8)} \right], \\ f_3^{\hat{m}_W} &= \left[ \tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)} - 0.66 \; \tilde{C}_{HWB}^{(6)} \right], \end{split}$$

Combined result informs on how assumptions about coefficients affect uncertainty

[Corbett, AM, Trott 2107.07470]

## <u>4-pt interactions: can we go 'full metric'?</u>



Key part of 2- and 3-pt result is that special kinematics made all momentum products trivial

No longer true at  $\geq$  4-pt interactions, i.e. for 4-pt:  $\mathcal{O} \sim s^n t^m$  $\longrightarrow$  infinite set of higher derivative operators can contribute

Effects must be added in by hand. But for many n = 4 processes and  $\mathcal{O}(1/\Lambda^4)$  number is manageable



# So where does this leave us?

#### How do we include truncation error?

- geoSMEFT basis: approach where 2 and 3 particle vertices sensitive to a minimal # of operators, # ~ constant with mass dimension. Physics with 2-, 3-particle vertices doable to any order in  $v/\Lambda$  (tree level)
- Can study select processes to  $1/\Lambda^4$ , use them to form guidelines for how to include truncation error more generally in SMEFT studies

Find (dim-6)<sup>2</sup> is not a great proxy for full  $1/\Lambda^4$  effects, at least for theories falling into tree/loop categorization and in loop-level SM processes

# So where does this leave us?

Lots to do:

 Encapsulate what we've learned into a truncation uncertainty/ uncertainties to hand off to experimentalists

- Expand the 'laboratory': more  $1 \rightarrow 2, 2 \rightarrow 2$  processes, other coefficient choices (what choices?)
- How to pin down new coefficients (e.g. remove flat directions)?

[Boughezal et al '20]

# Backup

# **Kinetic mixing model**

Try a specific UV model: kinetically mixed U(1)

$$\Delta \mathscr{L} = -\frac{1}{4} K_{\mu\nu} K^{\mu\nu} + \frac{1}{2} m_K^2 K_{\mu} K^{\mu} - \frac{k}{2} B^{\mu\nu} K_{\mu\nu}$$

integrate out to dim-8 (tree level only)

$$\Delta \mathscr{L} = -\frac{k^2}{2m_K^2} j_\mu j^\mu + \frac{k^2 - k^4}{2m_K^4} \left(\partial^2 j_\mu\right) j^\mu + \frac{g_1^2 k^4}{4m_K^4} \left(H^\dagger H\right) j_\mu j^\mu$$

where

$$j_{\mu} = \sum_{\psi} \left( -g_1 \mathbf{y}_{\psi} \right) \bar{\psi} \gamma_{\mu} \psi + \left( -\frac{1}{2} g_1 \right) H^{\dagger} i D_{\mu} H$$

# **Kinetic mixing model**

#### dim-6

|                                                                                                                                                | $H^4D^2$                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| $\frac{H^2\psi^2D}{2}$                                                                                                                         | $C_{H\square}^{(6)} \mid -\frac{g_1^2 k^2}{8m_{-1}^2}$                                        |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                         | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                        |  |
| $C_{He}^{(6)} \mid -\frac{y_e g_1^2}{2m_K^2} b_1$                                                                                              |                                                                                               |  |
| $C_{Hq}^{1,(6)} \mid -\frac{y_q g_1^2}{2m_K^2} b_1$                                                                                            | $\frac{\psi^4:(\bar{L}L)(\bar{L}L)}{(\epsilon)}$                                              |  |
| $C_{Hu}^{(6)} \mid -\frac{y_u g_1^2}{2m^2} b_1$                                                                                                | $\frac{C_{\ell\ell}^{(0)}}{C_{\ell\ell}} = \frac{-\frac{1}{8}\frac{g_1\kappa}{m_K^2}}{m_K^2}$ |  |
| $\frac{-\frac{y_{dg_{1}}^{2}}{C_{HJ}^{(6)}} - \frac{y_{dg_{1}}^{2}}{2m_{K}^{2}}b_{1}}{C_{HJ}^{(6)}} = -\frac{y_{dg_{1}}^{2}}{2m_{K}^{2}}b_{1}$ | $C_{qq}^{1,(6)} \mid -\frac{1}{72} \frac{g_1^2 k^2}{m_K^2}$                                   |  |
| $Ha = 2m_K^2 + 1$                                                                                                                              | $C_{\ell q}^{1,(6)} \mid \frac{1}{12} \frac{g_1^2 k^2}{m_K^2}$                                |  |
|                                                                                                                                                |                                                                                               |  |

#### dim-8

| $H^4\psi^2 D$                                                                                                                                                                                                                |                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| $C_{H\ell}^{1,(8)} \left  \begin{array}{c} \frac{\mathbf{y}_{\ell}g_{1}^{4}}{4m_{K}^{4}}k^{4} - \frac{g_{1}^{2}\mathbf{y}_{\ell}}{m_{K}^{4}}(k^{2} - k^{4})(2\lambda + \frac{g_{1}^{2} + g_{2}^{2}}{4}) \end{array} \right.$ |                                                                                                                     |
| $C_{He}^{1,(8)} \left  \begin{array}{c} \frac{\mathbf{y}_{e}g_{1}^{4}}{4m_{K}^{4}}k^{4} - \frac{g_{1}^{2}\mathbf{y}_{e}}{m_{K}^{4}}(k^{2} - k^{4})(2\lambda + \frac{g_{1}^{2} + g_{2}^{2}}{4}) \end{array} \right $          | $H^6D^2$                                                                                                            |
| $\boxed{ C_{Hq}^{1,(8)} \mid \frac{y_q g_1^4}{4  m_K^4}  k^4 - \frac{g_1^2  y_q}{m_K^4} (k^2 - k^4) (2\lambda + \frac{g_1^2 + g_2^2}{4}) } $                                                                                 | $C_{H,D2}^{(8)} \mid \frac{g_1^4 k^4}{8 m_K^4} - \frac{g_1^2 g_2^2}{2 m_K^4} (k^2 - k^4)$                           |
| $C_{Hu}^{1,(8)} \mid \frac{y_u g_1^4}{4  m_K^4}  k^4 - \frac{g_1^2  y_u}{m_K^4} (k^2 - k^4) (2\lambda + \frac{g_1^2 + g_2^2}{4})$                                                                                            | $C_{HD}^{(8)}  \left  \begin{array}{c} \frac{3g_1^4k^4}{16m_K^4} - \frac{g_1^2g_2^2}{2m_K^4}(k^2 - k^4) \right.$    |
| $\boxed{C_{Hd}^{1,(8)} \mid \frac{\mathbf{y}_d g_1^4}{4  m_K^4}  k^4 - \frac{g_1^2  \mathbf{y}_d}{m_K^4} (k^2 - k^4) (2\lambda + \frac{g_1^2 + g_2^2}{4})}$                                                                  | $X^2H^4$                                                                                                            |
| $C_{H\ell}^{2,(8)} \qquad -\frac{g_1^2 g_2^2}{16  m_K^4} (k^2 - k^4)$                                                                                                                                                        | $C_{HB}^{(8)} - \frac{g_1^4}{16 m_K^4} (k^2 - k^4)$                                                                 |
| $C_{Hq}^{2,(8)} \qquad -\frac{g_1^2 g_2^2}{16  m_K^4} (k^2 - k^4)$                                                                                                                                                           | $\begin{array}{ c c c c c }\hline C^{(8)}_{HW} & & \frac{g_1^2 g_2^2}{16  m_K^4} (k^2 - k^4) \\ \hline \end{array}$ |
| $C_{H\ell}^{3,(8)} = -\frac{g_1^2 g_2^2}{16  m_K^4} (k^2 - k^4)$                                                                                                                                                             |                                                                                                                     |
| $C_{Hq}^{3,(8)} \qquad \qquad -\frac{g_1^2 g_2^2}{16  m_K^4} (k^2 - k^4)$                                                                                                                                                    |                                                                                                                     |

No operators that impact  $h \rightarrow \gamma \gamma$ 

...

operators impacting  $h \rightarrow \gamma \gamma$  present

at dim-6 level, no effect, while there is an effect if we go to full  $1/\Lambda^4$ 

#### Model example: kinetic mixing



#### Model example: kinetic mixing







scanning dim-8 coefficients



| $g_{\text{eff,pr}}^{\mathcal{Z},\psi} = \frac{\bar{g}_Z}{2} \left[ (2s_{\theta_Z}^2 Q_\psi - \sigma_3) \delta_{pr} + \bar{v}_T \langle L_{3,4}^{\psi,pr} \rangle + \sigma_3 \bar{v}_T \langle L_{3,3}^{\psi,pr} \rangle \right]$                 |                                                                    |                                                         |                                                         |                                                            |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|--|--|--|
| $= \langle g_{\mathrm{SM,pr}}^{\mathcal{Z},\psi} \rangle + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^2/\Lambda^2)} + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^4/\Lambda^4)} + \cdots .$ |                                                                    |                                                         |                                                         |                                                            |  |  |  |
|                                                                                                                                                                                                                                                  |                                                                    |                                                         |                                                         |                                                            |  |  |  |
|                                                                                                                                                                                                                                                  |                                                                    |                                                         |                                                         |                                                            |  |  |  |
|                                                                                                                                                                                                                                                  | SMEFT correc                                                       | etions in $\{\hat{m}_W, \hat{m}_W, \hat{m}_W\}$         | $(\hat{m}_Z, \hat{G}_F)/\{\hat{lpha}, \hat{m}_Z\}$      | $\{Z, \hat{G}_F\}$ scheme                                  |  |  |  |
|                                                                                                                                                                                                                                                  | $\mathcal{O}(rac{v^4}{\Lambda^4})$                                | $\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},u_R} \rangle$ | $\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},d_R} \rangle$ | $\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},\ell_R} \rangle$ |  |  |  |
| efficients                                                                                                                                                                                                                                       | $\langle g_{\mathrm{eff}}^{\mathcal{Z},\psi} \rangle^2$            | 14/5.5                                                  | -27/-11                                                 | -9.1/-3.6                                                  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                            | $\tilde{C}_{HB} C_{HWB}$                                           | -0.21/0.39                                              | 0.10/-0.19                                              | 0.31/-0.58                                                 |  |  |  |
|                                                                                                                                                                                                                                                  | $\tilde{C}_{HD}^2$                                                 | 0.28 / -0.026                                           | -0.14/0.013                                             | -0.42/0.040                                                |  |  |  |
|                                                                                                                                                                                                                                                  | $	ilde{C}_{HD}  	ilde{C}^{(6)}_{H\psi}$                            | -0.83/-0.19                                             | -0.83/-0.19                                             | -0.83/-0.19                                                |  |  |  |
| -                                                                                                                                                                                                                                                | $\tilde{C}_{HD}\tilde{C}_{HWB}$                                    | 0.59/-0.19                                              | -0.29/0.097                                             | -0.88/0.29                                                 |  |  |  |
|                                                                                                                                                                                                                                                  | $	ilde{C}_{HD} \langle g_{\mathrm{eff}}^{\mathcal{Z},\psi}  angle$ | 4.0/0.50                                                | 4.0/0.50                                                | 4.0/0.50                                                   |  |  |  |
|                                                                                                                                                                                                                                                  | $(\tilde{C}_{H\psi}^{(6)})^2$                                      | 0.62/1.4                                                | -1.2/-2.8                                               | -0.42/-0.93                                                |  |  |  |
|                                                                                                                                                                                                                                                  | $\tilde{C}_{HWB} \tilde{C}^{(6)}_{H\psi}$                          | -0.69/0.58                                              | -0.69/0.58                                              | -0.69/0.58                                                 |  |  |  |
|                                                                                                                                                                                                                                                  | $\tilde{C}^{(6)}_{III} \langle q_{z}^{\mathcal{Z},\psi} \rangle$   | -6.7/-5.8                                               | 13/12                                                   | 4.5/3.9                                                    |  |  |  |

| $C_{HD}^2$                                                                  | 0.28 / -0.026 | -0.14/0.013   | -0.42/0.040  |
|-----------------------------------------------------------------------------|---------------|---------------|--------------|
| $\tilde{C}_{HD}\tilde{C}^{(6)}_{H\psi}$                                     | -0.83/-0.19   | -0.83/-0.19   | -0.83/-0.19  |
| $\tilde{C}_{HD}\tilde{C}_{HWB}$                                             | 0.59/-0.19    | -0.29/0.097   | -0.88/0.29   |
| $\tilde{C}_{HD}\langle g_{\mathrm{eff}}^{\mathcal{Z},\psi}  angle$          | 4.0/0.50      | 4.0/0.50      | 4.0/0.50     |
| $(	ilde{C}^{(6)}_{H\psi})^2$                                                | 0.62/1.4      | -1.2/-2.8     | -0.42/-0.93  |
| $\tilde{C}_{HWB} \tilde{C}^{(6)}_{H\psi}$                                   | -0.69/0.58    | -0.69/0.58    | -0.69/0.58   |
| $\tilde{C}_{H\psi}^{(6)} \langle g_{\text{eff}}^{\mathcal{Z},\psi} \rangle$ | -6.7/-5.8     | 13/12         | 4.5/3.9      |
| $\tilde{C}_{HWB} \langle g_{\text{eff}}^{\mathcal{Z},\psi} \rangle$         | 3.7/0.26      | 3.7/0.26      | 3.7/0.26     |
| $\tilde{C}_{HW} C_{HWB}$                                                    | -0.21/0.39    | 0.10/-0.19    | 0.31/-0.58   |
| $	ilde{C}^{(8)}_{HD}$                                                       | -0.014/0.026  | 0.0069/-0.013 | 0.021/-0.040 |
| $	ilde{C}^{(8)}_{HD,2}$                                                     | -0.21/0.026   | 0.10/-0.013   | 0.31/-0.040  |
| $	ilde{C}^{(8)}_{H\psi}$                                                    | 0.19/0.19     | 0.19/0.19     | 0.19/0.19    |
| $	ilde{C}^{(8)}_{HW,2}$                                                     | -0.38/0       | 0.19/0        | 0.58/0       |
| $\tilde{C}_{HWB}^{(8)}$                                                     | -0.10/0.19    | 0.051/-0.097  | 0.15/-0.29   |
| $\delta G^{(8)}$                                                            | -0.078/0.15   | 0.039/-0.075  | 0.12/-0.22   |



scanning dim-8 coefficients



| Corbett, Helset, AM, | Trott] |
|----------------------|--------|
|----------------------|--------|

| $g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi}$ | = | $\frac{\bar{g}_Z}{2} \left[ (2s_{\theta_Z}^2 Q_\psi - \sigma_3) \delta_{pr} + \bar{v}_T \langle L_{3,4}^{\psi,pr} \rangle + \sigma_3 \bar{v}_T \langle L_{3,3}^{\psi,pr} \rangle \right]$                                                    |
|------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | = | $\langle g_{\mathrm{SM,pr}}^{\mathcal{Z},\psi} \rangle + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^2/\Lambda^2)} + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^4/\Lambda^4)} + \cdots$ |
|                                          |   |                                                                                                                                                                                                                                              |

|                                                                                |                                                        |                                                     |                                                            | _   |
|--------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-----|
| SMEFT correc                                                                   | etions in $\{\hat{m}_W,$                               | $(\hat{m}_Z, \hat{G}_F)/\{\hat{lpha}, \hat{m}_Z\}$  | $Z, \hat{G}_F \}$ scheme                                   |     |
| $\mathcal{O}(rac{v^4}{\Lambda^4})$                                            | $\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},u_R}  angle$ | $\langle g_{	ext{eff,pp}}^{\mathcal{Z},d_R}  angle$ | $\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},\ell_R} \rangle$ |     |
| $\langle g_{	ext{eff}}^{\mathcal{Z},\psi} angle^2$                             | 14/5.5                                                 | -27/-11                                             | -9.1/-3.6                                                  |     |
| $\tilde{C}_{HB}  C_{HWB}$                                                      | -0.21/0.39                                             | 0.10/-0.19                                          | 0.31/-0.58                                                 |     |
| $	ilde{C}^2_{HD}$                                                              | 0.28 / -0.026                                          | -0.14/0.013                                         | -0.42/0.040                                                |     |
| $	ilde{C}_{HD}  	ilde{C}^{(6)}_{H\psi}$                                        | -0.83/-0.19                                            | -0.83/-0.19                                         | -0.83/-0.19                                                |     |
| $\tilde{C}_{HD}\tilde{C}_{HWB}$                                                | 0.59/-0.19                                             | -0.29/0.097                                         | -0.88/0.29                                                 |     |
| $\tilde{C}_{HD} \langle g_{\text{eff}}^{\mathcal{Z},\psi} \rangle$             | 4.0/0.50                                               | 4.0/0.50                                            | 4.0/0.50                                                   |     |
| $(	ilde{C}_{H\psi}^{(6)})^2$                                                   | 0.62/1.4                                               | -1.2/-2.8                                           | -0.42/-0.93                                                |     |
| $\tilde{C}_{HWB}  \tilde{C}^{(6)}_{H\psi}$                                     | -0.69/0.58                                             | -0.69/0.58                                          | -0.69/0.58                                                 |     |
| $	ilde{C}_{H\psi}^{(6)} \langle g_{	ext{eff}}^{\mathcal{Z},\psi}  angle$       | -6.7/-5.8                                              | 13/12                                               | 4.5/3.9                                                    |     |
| $\tilde{C}_{HWB} \left\langle g_{\text{eff}}^{\mathcal{Z},\psi} \right\rangle$ | 3.7/0.26                                               | 3.7/0.26                                            | 3.7/0.26                                                   |     |
| $\tilde{C}_{HW} C_{HWB}$                                                       | -0.21/0.39                                             | 0.10/-0.19                                          | 0.31/-0.58                                                 |     |
| $	ilde{C}^{(8)}_{HD}$                                                          | -0.014/0.026                                           | 0.0069/-0.013                                       | 0.021/-0.040                                               |     |
| $	ilde{C}^{(8)}_{HD,2}$                                                        | -0.21/0.026                                            | 0.10/-0.013                                         | 0.31/-0.040                                                |     |
| $\tilde{C}^{(8)}_{H\psi}$                                                      | 0.19/0.19                                              | 0.19/0.19                                           | 0.19/0.19                                                  |     |
| Exclude                                                                        | s 4-fermi                                              | terms, dip                                          | ole opera                                                  | ito |
| $\delta G^{(8)}$                                                               | -0.078/0.15                                            | 0.039/-0.075                                        | 0.12/-0.22                                                 |     |

| 8) | -0.078/0.15 | 0.030/0.075 | 0.12/0.22 |
|----|-------------|-------------|-----------|
|    |             |             |           |

E.g. try classic S-T plot: Zero all dimension-6 operators except  $C_{HD} \sim T$ ,  $C_{HWB} \sim S$  but leave all dimension-8 on. Set all dimension-8 coefficients to 1 (tree) or 0.01 (loop) and fix  $\Lambda$ , then compare  $\chi^2$  ellipses with and without dimension-8 terms



can repeat for other 2-d projections

E.g. try classic S-T plot: Zero all dimension-6 operators except  $C_{HD} \sim T$ ,  $C_{HWB} \sim S$  but leave all dimension-8 on. Set all dimension-8 coefficients to 1 (tree) or 0.01 (loop) and fix  $\Lambda$ , then compare  $\chi^2$  ellipses with and without dimension-8 terms



can repeat for other 2-d projections

#### # operators small and remains ~fixed for increasing mass dimension

|                                                                                          | Mass Dimension |                  |               |               |               |
|------------------------------------------------------------------------------------------|----------------|------------------|---------------|---------------|---------------|
| Field space connection                                                                   | 6              | 8                | 10            | 12            | 14            |
| $k_{IJA}(\phi)(D^{\mu}\phi)^{I}(D^{\nu}\phi)^{J}\mathcal{W}^{A}_{\mu\nu}$                | 0              | 3                | 4             | 4             | 4             |
| $f_{ABC}(\phi)\mathcal{W}^{A}_{\mu u}\mathcal{W}^{B, u ho}\mathcal{W}^{C,\mu}_{ ho}$     | 1              | 2                | 2             | 2             | 2             |
| $Y_{pr}^{u}(\phi)\bar{Q}u+$ h.c.                                                         | $2 N_f^2$      | $2 N_f^2$        | $2 N_f^2$     | $2 N_f^2$     | $2N_f^2$      |
| $Y^d_{pr}(\phi)\bar{Q}d+	ext{ h.c.}$                                                     | $2N_f^2$       | $2N_f^2$         | $2N_f^2$      | $2N_f^2$      | $2N_f^2$      |
| $Y_{pr}^{e}(\phi)\overline{L}e+$ h.c.                                                    | $2N_f^2$       | $2N_f^2$         | $2 N_f^2$     | $2N_f^2$      | $2N_f^2$      |
| $d_A^{e,pr}(\phi) \bar{L} \sigma_{\mu\nu} e \mathcal{W}_A^{\mu\nu} + \text{h.c.}$        | $4N_f^2$       | $6 N_{f}^{2}$    | $6 N_{f}^{2}$ | $6 N_{f}^{2}$ | $6 N_{f}^{2}$ |
| $d_A^{u,pr}(\phi) \bar{Q} \sigma_{\mu\nu} u \mathcal{W}_A^{\mu\nu} + \text{h.c.}$        | $4 N_{f}^{2}$  | $I_{6}N_{f}^{2}$ | $6 N_{f}^{2}$ | $6 N_{f}^{2}$ | $6 N_{f}^{2}$ |
| $d_A^{d,pr}(\phi) \bar{Q} \sigma_{\mu\nu} d\mathcal{W}_A^{\mu\nu} + \text{h.c.}$         | $4 N_{f}^{2}$  | $6 N_{f}^{2}$    | $6 N_{f}^{2}$ | $6 N_{f}^{2}$ | $6 N_{f}^{2}$ |
| $L^{\psi_R}_{pr,A}(\phi)(D^\mu\phi)^J(\bar{\psi}_{p,R}\gamma_\mu\sigma_A\psi_{r,R})$     | $N_f^2$        | $N_f^2$          | $N_f^2$       | $N_f^2$       | $N_f^2$       |
| $\hat{L}_{pr,A}^{\psi_L}(\phi)(D^\mu\phi)^J(ar{\psi}_{p,L}\gamma_\mu\sigma_A\psi_{r,L})$ | $2 N_f^2$      | $4 N_f^2$        | $4 N_f^2$     | $4 N_f^2$     | $4 N_f^2$     |

## **Example:** $L_{I,A}(\phi)\overline{\psi}_1\gamma^{\mu}\tau_A\psi_2(D_{\mu}\phi)^I$

contributing operators

$$\begin{array}{l} \mathcal{Q}_{H\psi}^{1,(6+2n)} = (H^{\dagger}H)^{n}H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{3,(6+2n)} = (H^{\dagger}H)^{n}H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{a}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{2,(8+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma_{a}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{2,(8+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma_{c}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{b}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{6,(8+2n)} = \epsilon_{bc}^{a}(H^{\dagger}H)^{n}(H^{\dagger}\sigma_{c}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{b}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}. \end{array} \right\} \begin{array}{c} \text{higher dim. versions} \\ \text{of ``class 7''} \\ \text{operators} \\ \text{operators} \\ \text{operators} \\ \text{from } d \geq 8 \end{array}$$

#### compact form for connection:

$$\begin{split} L_{J,A}^{\psi,pr} &= -(\phi \gamma_4)_J \delta_{A4} \sum_{n=0}^{\infty} C_{H\psi}^{1,(6+2n)} \left(\frac{\phi^2}{2}\right)^n - (\phi \gamma_A)_J (1 - \delta_{A4}) \sum_{n=0}^{\infty} C_{H\psi_L}^{3,(6+2n)} \left(\frac{\phi^2}{2}\right)^n \\ &+ \frac{1}{2} (\phi \gamma_4)_J (1 - \delta_{A4}) \left(\phi_K \Gamma_{A,L}^K \phi^L\right) \sum_{n=0}^{\infty} C_{H\psi_L}^{2,(8+2n)} \left(\frac{\phi^2}{2}\right)^n \\ &+ \frac{\epsilon_{BC}^A}{2} (\phi \gamma_B)_J \left(\phi_K \Gamma_{C,L}^K \phi^L\right) \sum_{n=0}^{\infty} C_{H\psi_L}^{\epsilon,(8+2n)} \left(\frac{\phi^2}{2}\right)^n \end{split}$$

# What about G<sub>F</sub>?

G<sub>F</sub> involves more than quadratic terms:



However, since G<sub>F</sub> derived at muon mass scale  $(D \sim m_{\mu} \ll \Lambda)$ and SM term is from L<sup>4</sup>, # of higher dimensional contributions is dramatically reduced

$$C_{4\ell,2}^{(8+2n)}\left(H^{\dagger}H\right)^{1+n}\left(\bar{\ell}_{2}\gamma^{\mu}\sigma^{i}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{i}\ell_{1}\right) \qquad iC_{4\ell,5}^{(8+2n)}\epsilon_{ijk}\left(H^{\dagger}H\right)^{n}\left(H^{\dagger}\sigma^{i}H\right)\left(\bar{\ell}_{2}\gamma^{\mu}\sigma_{j}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{k}\ell_{1}\right)$$

All orders result is possible even for contact terms:

$$\mathscr{G}_{F}^{4pt} = \frac{1}{\bar{v}_{T}^{2}} \left( \tilde{C}_{\mu c c \mu}^{(6)} + \tilde{C}_{\mu \mu \mu e}^{(6)} + \frac{\tilde{C}_{4\ell,2}^{(8+2n)}}{2^{n}} + \frac{\tilde{C}_{4\ell,5}^{(8+2n)}}{2^{n}} \right)$$

[Hays, Helset, Martin, Trott 2007.00565]

# What about G<sub>F</sub>?

G<sub>F</sub> involves more than quadratic terms:



However, since G<sub>F</sub> derived at muon mass scale  $(D \sim m_{\mu} \ll \Lambda)$ and SM term is from L<sup>4</sup>, # of higher dimensional contributions is dramatically reduced

$$C_{4\ell,2}^{(8+2n)}\left(H^{\dagger}H\right)^{1+n}\left(\bar{\ell}_{2}\gamma^{\mu}\sigma^{i}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{i}\ell_{1}\right) \qquad iC_{4\ell,5}^{(8+2n)}\epsilon_{ijk}\left(H^{\dagger}H\right)^{n}\left(H^{\dagger}\sigma^{i}H\right)\left(\bar{\ell}_{2}\gamma^{\mu}\sigma_{j}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{k}\ell_{1}\right)$$

All orders result is possible even for contact terms:

$$\mathscr{G}_{F}^{4pt} = \frac{1}{\bar{v}_{T}^{2}} \left( \tilde{C}_{\mu c c \mu}^{(6)} + \tilde{C}_{\mu \mu \mu e}^{(6)} + \frac{\tilde{C}_{4\ell,2}^{(8+2n)}}{2^{n}} + \frac{\tilde{C}_{4\ell,5}^{(8+2n)}}{2^{n}} \right)$$

[Hays, Helset, Martin, Trott 2007.00565]