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In SMEFT framework

|A |2 = |ASM |2 +
2Re(A*SM A6)

Λ2
+

1
Λ4 ( |A6 |2 + 2Re(A*SM A8)) + ⋯

interference piece, 
usually largest effect. 

State of the art 
SMEFT

‘Higher order’ 
 

corrections
𝒪(1/Λ4)

SMEFT Warsaw basis:      operators at dim-6 
 operators at dim-8

𝒪(60)
𝒪(1000)

What’s the impact from  corrections?1/Λ4
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Higher order effects so should be small… but 

• they are a form of uncertainty;  ‘theory error’ on extracted scale Λ

• there are instances where interference term isn’t present or is 
suppressed, e.g. helicity mismatch between SM and dim-6

• faster growth with energy,   vs.   : increasingly important when 
looking at high energy (e.g. tails of some kinematic distribution)

E4 E2

 How do we proceed?
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Is there a simple estimate, i.e (dim-6)2 that works?

Do we need to do case by case?



Geometric SMEFT: 
A reorganization of the SMEFT operators (= a basis), where 

2 and 3-particle interactions are sensitive to the  
minimal number of operators

With fewer operators around, can actually do complete  
calculations for certain processes.  

 
Use those processes as simple laboratories for truncation error 

studies 

1/Λ4

[2001.01453]     

[see talk by T. Corbett too!]



SMEFT operators:
DaHbψ̄cψdFx

For operator affecting 2,3-pt vertices: restrictions

1.) Can’t have too many fields

  (DH†)(DH)(DH†)(DH)e.g.  4+ fields, can’t contribute→

2.) Momentum on fields other than H is ‘trivial’

DμH (Dμψ̄) ψ

∼ (pH ⋅ pψ̄) H ψ̄ ψ

∼ (
m2

ψ − m2
H − m2

ψ̄

2 ) H ψ̄ ψ

e.g.

pH + pψ̄ + pψ = 0

Just changes coefficient of  : not a new operator structureH ψ̄ ψ
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have the form



Allowed 2, 3-pt structures:

Similarly, D2ψ can be reduced as

D2ψ = DµDνg
µνψ = DµDν(γ

µγν + iσµν)ψ ⇒ EOM and higher-points, (2.8)

where σµν = i
2(γµγν − γνγµ). In what follows, when D2F appears, it is replaced in terms of

EOM terms and higher-point functions for these reasons. Explicitly reducing operator forms

by the EOM, when possible, in favour of other composite operators, has a key role in these

arguments.

Now consider higher-derivative contributions to three-point functions. Explicit appear-

ances of D2F are removed due to the proceeding argument. Further, a general combination

of derivatives, acting on three general SM fields F1,2,3,

f(H)(DµF1)(DνF2)D{µν}F3, (2.9)

is removable in terms of EOM terms and higher-point functions, using integration by parts:

f(H)(DµF1)(DνF2)D{µν}F3 (2.10)

=− f(H)
[

(D2F1)(DνF2) + (DµF1)(DµDνF2) + (DµDνF1)(DµF2) + (DνF1)(D
2F2)

]

(DνF3)

− (Dµf(H)) [(DµF1)(DνF2) + (DνF1)(DµF2)] (DνF3)

⇒− f(H) [(DµF1)(DµDνF2) + (DµDνF1)(DµF2)] (DνF3) + EOM and higher-points

⇒− f(H)(D[µ,ν]F1)(DµF2)(DνF3) + f(H)(DµF1)(DµF2)(D
2F3) + EOM and higher-points

⇒ EOM and higher-points.

As a result, in general, an operator with four or more derivatives acting on three (possibly

different) fields Fi can be reduced out of three-point amplitudes.

When considering field space connections that can reduce to three-point functions when

a vacuum expectation value is taken, we also use

f(φ)F1 (DµF2) (DµF3)⇒ (Dµf(φ)) (DµF1)F2 F3 +
1

2
(D2f(φ))F1 F2 F3 + EOM ,(2.11)

to conventionally move derivative terms onto scalar fields. After reducing the possible field

space connections using these arguments systematically, and integrating by parts, a minimal

generalization of field space connections for CP even electroweak bosonic two- and three-point

amplitudes is composed of

hIJ (φ)(Dµφ)
I(Dµφ)

J , gAB(φ)WA
µνWB,µν , kAIJ(φ)(Dµφ)

I(Dνφ)
J Wµν

A ,

fABC(φ)WA
µνWB,νρWC,µ

ρ ,

and the scalar potential V (φ).

The minimal set of field space connections involving fermionic field in two- and three-point

functions is

Y (φ)ψ̄1ψ2, LI,A(φ)ψ̄1γ
µτAψ2(Dµφ)

I , dA(φ)ψ̄1σ
µνψ2WA

µν ,
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[+ versions with GA ]
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functions of  H†H/Λ2 ≡ ϕ2

hIJ = 1 + ϕ2C(6)
H□ +

∞

∑
n=0 ( ϕ2

2 )
n+2

(C(8+2n)
HD − C(8+2n)

H,D2 ) δIJ +
ΓI

A,JϕKΓK
A,LϕL

2
C(6)

HD

2
+

∞

∑
n=0 ( ϕ2

2 )
n+1

C(8+2n)
H,D2

Functions can be figured out order by order, # of structures saturates

Ex.)

Dim-6 : 2 terms Dim-8+: 2 terms

Flat ‘metric’ in SM, curved in SMEFT. Geometric perspective -> geoSMEFT



SMEFT phenomenology for processes involving 2, 3-pt interactions now 
doable to any order in v2/Λ2

 Specifically,  easily calculated for a large set of processes  𝒪(1/Λ4)

includes

and
suppressed by 

 
ΓZmZ

v2
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also

geoSMEFT at work:

sftpobou

[2007.00565 Hays,  
      Helset, AM, Trott]

[2102.02819

 Corbett, Helset, AM, Trott]



𝒜hγγ
SM

2
+ 2 Re (𝒜hγγ

SM)⟨h |γγ⟩ℒ(6) + ⟨h |γγ⟩2
ℒ(6)

⟨h |γγ⟩ℒ(6) = [
g2

2C̃(6)
HB + g2

1C̃(6)
HW − g1g2C̃(6)

HWB

(g2
1 + g2

2) v̄T ]defining:

(dim-6)2 estimate: 

8

𝒜hγγ
SM

2
+2 Re (𝒜hγγ

SM) (1 + ⟨ h
44⟩

ℒ(6))⟨h |γγ⟩ℒ(6) + (1 + 4v̄T Re (𝒜hγγ
SM)) (⟨h |γγ⟩ℒ(6))2

+2 Re (𝒜hγγ
SM)

g2
2C̃(8)

HB + g2
1 (C̃(8)

HW − C̃(8)
HW,2) − g1g2C̃(8)

HWB

(g2
1 + g2

2) v̄T

 Full  result:𝒪(1/Λ4)

e.g)   h → γγ

 decays: impact on decay widths 1 → 2

C̃(6)
H□, C̃(6)

HD, C̃(8)
HD, C̃(8)

HD2

<latexit sha1_base64="gRkLF/8GQhmCxuxt1NbQbx39AfI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3V9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A518jWs=</latexit> {

C̃(6) = C(6) v2
T

Λ2

C̃(8) = C(8) v4
T

Λ4



fixing  
result: contours show 
range of effects once 
full  effects are 

included

1/Λ2, (dim-6)2

1/Λ4
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Figure 1. The deviations in h ! �� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.004, C(6)
HWB

= 0.007, C(6)
HD

= �0.74, and �G
(6)
F

= �1.6. In the right panel they are

C
(6)
HB

= 0.007, C(6)
HW

= 0.007, C(6)
HWB

= �0.015, C(6)
HD

= 0.50, and �G
(6)
F

= 1.26.

Figure 2. The deviations in h ! Z� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.02, C(6)
HWB

= �0.011, C(6)
HD

= 0.53, and �G
(6)
F

= 0.13. In the right panel they are

C
(6)
HB

= 0.002, C(6)
HW

= 0.001, C(6)
HWB

= �0.001, C(6)
HD

= 0.28, and �G
(6)
F

= �1.15.
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 only1/Λ2

1/Λ2 + (dim-6)2

:   Quantify effect by randomly drawing coefficients and 
comparing dim-6, (dim-6)2 and full  result: 


for `tree’ operators:  ,`loop’ operators: 
1/Λ4

𝒪(1) 𝒪(0.01)
[Arzt’93], [Einhorn, Wudka ’13], [Craig et al ’20]

e.g)   h → γγ
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 decays: impact on decay widths1 → 2
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 only1/Λ2

1/Λ2 + (dim-6)2

Large effect,  at 
 = 2.5TeV ;  

 
only loop-level operators 

enter at dim-6, while 
tree-level operators 

enter at dim-8

𝒪(20%)
Λ

similar story for h → Zγ
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 decays: impact on decay widths1 → 2
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Figure 3. The deviations in Z ! `` from the O(v2/⇤2) (red line) and partial-square (black line)
results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions). In the left
panel the coe�cients determining the O(v2/⇤2) and partial-square results are C1,(6)

H`
= �0.46, C3,(6)

H`
=

1.24, C(6)
He

= 1.53, C(6)
HD

= �0.79, C(6)
HWB

= 0.007, and �G
(6)
F

= 0.16. In the right panel they are

C
1,(6)
H`

= 1.55, C3,(6)
H`

= �0.71, C(6)
He

= 0.23, C(6)
HD

= �0.51, C(6)
HWB

= �0.008, and �G
(6)
F

= �0.44.

SMEFT result as an estimate of a ‘truncation uncertainty’; and (2) taking the fractional un-

certainty on each coe�cient to be v
2
/⇤2. The former procedure uses the partial O(v4/⇤4)

information in the L(6) operators to take all the calculable terms when complete higher orders

are not available. The latter procedure instead only scales the measured coe�cient by the

ratio of dimensionful parameters.

We test the uncertainty procedures by taking the full O(v4/⇤4) SMEFT calculation to

provide the ‘true’ value of a given coe�cient. The shift in the partial width relative to the

SM is calculated for a set of coe�cients drawn from a gaussian distribution. Fixing the value

of this shift and taking a given value of ⇤, we determine the change in one of the coe�cients

when calculating the partial width at O(v2/⇤2), or with the partial-square procedure. The

deviation in the coe�cient value relative to its initial value is taken as the ‘truncation error’.

Figure 4 shows the distribution of this error for C(6)

HW
in the O(v2/⇤2) (left) and partial-

square (right) calculations of �(h ! ��) using 50,000 samplings of the coe�cients and taking

⇤ = 2.5 TeV. This error distribution can be compared to the distribution of uncertainty

estimates shown in Fig. 5, where the distribution in the left panel is the di↵erence between

the O(v2/⇤2) and partial-square calculations, and in the right panel it is v
2
/⇤2 times the

coe�cient. The uncertainty estimate is 1-2 orders of magnitude smaller than the error, with

the v
2
/⇤2 distribution narrower by a factor of a few.

The validity of an uncertainty estimate is typically demonstrated by the pull distribution,

defined as the error divided by the uncertainty. An unbiased estimate of the central value

– 18 –

e.g.)  Z → ℓ+ℓ−

Now tree-level operators present 
for both dim-6 and dim-8

smaller impact,  at  = TeV𝒪( % ) Λ

11

 decays: impact on decay widths1 → 2

~ (dim6)2 piece not a bad estimate

 : Quantify effect by randomly drawing coefficients and 
comparing dim-6, (dim-6)2 and full  result: 


for `tree’ operators:  ,`loop’ operators: 
1/Λ4

𝒪(1) 𝒪(0.01)
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where

𝒪(1/Λ2)

𝒪(1/Λ2 × loop)

𝒪(1/Λ4)

[Corbett, AM, Trott 2107.07470]

Can combine with 𝒪(1/Λ2) × SM loop

Combined result informs on how 
assumptions about coefficients affect 
uncertainty



Key part of 2- and 3-pt result is 
that special kinematics made all 

momentum products trivial

No longer true at -pt interactions, i.e. for 4-pt:≥ 4 𝒪 ∼ sn tm

 infinite set of higher derivative operators can contribute⟶

4-pt interactions: can we go ‘full metric’?

13

Effects must be added in by hand.  But for many n = 4 
processes and  number is manageable𝒪(1/Λ4)

Ex.)  qq̄ → h + W/Z

TN 4qu!＾!jo!hfpTNFGU ofx!bu!5.qu-! !
pqfsbupst!bu!

𝒪(10)
1/Λ4

[Corbett, AM, Trott, in progress]



So where does this leave us?

• geoSMEFT basis: approach where 2 and 3 particle vertices 
sensitive to a minimal # of operators, # ~ constant with mass 
dimension.  Physics with 2-, 3-particle vertices doable to any 
order in  (tree level)


• Can study select processes to , use them to form 
guidelines for how to include truncation error more generally in 
SMEFT studies

v/Λ
1/Λ4

14

Find (dim-6)2 is not a great proxy for full  effects, at 
least for theories falling into tree/loop categorization and 
in loop-level SM processes

1/Λ4

How do we include truncation error?



So where does this leave us?

Lots to do:

• Encapsulate what we’ve learned into a truncation uncertainty/
uncertainties to hand off to experimentalists 
 
…


• Expand the ‘laboratory’: more  processes, 
other coefficient choices (what choices?)  

• How to pin down new coefficients (e.g. remove flat 
directions)? 

1 → 2, 2 → 2

15

[Boughezal et al ’20]



Backup

16



17

Try a specific UV model: kinetically mixed U(1)

integrate out to dim-8 (tree level only)

Δℒ = −
1
4

KμνKμν +
1
2

m2
KKμKμ −

k
2

BμνKμν

Δℒ = −
k2

2m2
K

jμ jμ +
k2 − k4

2m4
K

(∂2jμ) jμ +
g2

1k4

4m4
K

(H†H) jμ jμ

jμ = ∑
ψ

(−g1yψ) ψ̄γμψ + (−
1
2

g1) H†iDμH

where 

Kinetic mixing model
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Table 3. Matching coe�cients onto operators in L
(8) relevant for �(h ! ��) and �(Z !  ̄ ). In ad-

dition to these matching contributions, there are four-fermion operators and four-point contributions.
See the results in Eqn. 6.11, which include these terms and neglect only e↵ects suppressed by Yukawa
couplings.

field strengths. This is an accidental pattern due to the renormalizability of some

UV physics models. Such matching patterns are not present in non-renormalizable

UV theories in general [49]. They also do not apply to operators with higher mass

dimensions. The result in Eqn. (6.11) shows that gauge field-strength operators can

receive tree-level matching contributions at L
(8) in a weakly-coupled renormalizable

UV model. This is consistent with the results in Ref. [49, 50]. At L
(7), the seesaw

model also leads to operators with gauge field strengths [56] in tree-level matching.

These examples show that the operator normalization pattern of Ref. [48] does not

extend to operators of arbitrary mass dimension in the SMEFT.

• The rearrangement of derivative terms at L(8) leads to matching coe�cients proportional

to v̄
2

T
/m

2

K
for L

(6). Formally, an infinite series in (v̄2
T
/m

2

K
)n is present in matching

coe�cients for higher-dimensional operators. This is due to rearranging matching terms

in the non-redundant operator basis. However, as this dependence is an artifact of this

particular basis we expect it to cancel in the full result. This occurs as expected.

Restricting the results to the subset of operators that contribute to �(h ! ��) and �(Z !

 ̄ ), the matching results for L(8) operators are given in Table 3.
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and the heavy field does not violate U(3)5 flavour symmetry. Fierz rearrangements of the four-fermion
operators are allowed.
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where a sum is implied over all  L,  , and  
0 pairs, and terms proportional to Yukawa

couplings are neglected. The conventions used for reducing to the operator basis in the L
(8)

matching are those of the geoSMEFT formulation [9], which allows all-orders results in the

v̄T /⇤ expansion to be defined. In this convention derivatives have been moved onto scalar
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…

dim-6 dim-8

No operators that 
impact  h → γγ

operators impacting  
 presenth → γγ

∴ at dim-6 level, no effect, while there is an effect if we go to full  1/Λ4

Kinetic mixing model

18



Model example: kinetic mixing

Δℒ = −
1
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KKμKμ −

k
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No dim-6 operators 
that impact  h → γγ

integrate out  at tree levelKμ

Dim-8 operators 
impacting   

present
h → γγ
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Table 3. Matching coe�cients onto operators in L
(8) relevant for �(h ! ��) and �(Z !  ̄ ). In ad-

dition to these matching contributions, there are four-fermion operators and four-point contributions.
See the results in Eqn. 6.11, which include these terms and neglect only e↵ects suppressed by Yukawa
couplings.

field strengths. This is an accidental pattern due to the renormalizability of some

UV physics models. Such matching patterns are not present in non-renormalizable

UV theories in general [49]. They also do not apply to operators with higher mass

dimensions. The result in Eqn. (6.11) shows that gauge field-strength operators can

receive tree-level matching contributions at L
(8) in a weakly-coupled renormalizable

UV model. This is consistent with the results in Ref. [49, 50]. At L
(7), the seesaw

model also leads to operators with gauge field strengths [56] in tree-level matching.

These examples show that the operator normalization pattern of Ref. [48] does not

extend to operators of arbitrary mass dimension in the SMEFT.

• The rearrangement of derivative terms at L(8) leads to matching coe�cients proportional

to v̄
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K
for L

(6). Formally, an infinite series in (v̄2
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K
)n is present in matching

coe�cients for higher-dimensional operators. This is due to rearranging matching terms

in the non-redundant operator basis. However, as this dependence is an artifact of this

particular basis we expect it to cancel in the full result. This occurs as expected.

Restricting the results to the subset of operators that contribute to �(h ! ��) and �(Z !

 ̄ ), the matching results for L(8) operators are given in Table 3.
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Figure 7. The dependence of �(h ! ��) on the parameters of a U(1) mixing model using the
SMEFT expansion to O(v̄4

T
/m

4
K
). The left plot shows the dependence of the ratio ��↵̂ew

SMEFT(h !

��)/�↵̂ew
SM (h ! ��) on the coupling parameter k for mK = {500, 1000} GeV, for the blue and orange

curves respectively. The right plot shows the relative deviations {±0.01,±0.1,±0.3} of the partial
width in the {mK , k} plane, with intermediate deviations represented by coloured regions. The results
are shown in the ↵̂ew scheme, though results in the m̂W scheme are qualitatively the same. The partial
width has no sensitivity to the model at O(v̄2

T
/m

2
K
) with tree-level matching. Direct experimental

bounds on �(h ! ��) are not available since only ratios of partial widths can be measured directly,
e.g. �(h ! ��)/�(h ! 4`) [57].

All di↵erences between partial-square and full SMEFT results are at order v̄
4

T
/m

4

K
. Such

di↵erences are most important when deviations from the SM are larger, e.g. for lower mass

scales, where experimental analyses are more likely to uncover deviations using the SMEFT

formalism. We show some of the implications of these results in Figs. 8 and 9. A number of

conclusions are apparent:

• The results show significant scheme dependence, which increases when a full SMEFT

result is used. This is expected on general grounds due to the decoupling theorem:

low-energy measured parameters are absorbing the e↵ects of high-scale physics. Scheme

dependence is expected to be reduced only through a global combination of constraining

measurements.

• The model parameters extracted from the partial-square result for the ↵̂ew input-

parameter scheme are constrained more tightly than those at O(v̄4
T
/m

4

K
), given the

< 0.1% precision on the �Z measurement (Fig. 9). The O(v̄2
T
/m

2

K
) constraints are also

overly tight, though less so.

• Results in the m̂W scheme are more consistent across the di↵erent orders in the calcula-

tion. The parameter constraints extracted from the partial-square andO(v̄2
T
/m

2

K
) calcu-
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Redo classic SMEFT LEP1 analysis to  𝒪(1/Λ4)

EWPD is the ideal controlled case to study SMEFT truncation

1113EWPD LEP legacy

Just Taylor expand the geosmeft effective couplings to second order.

Ex: Helset, 
Corbett, Martin, 
Trott (next week)

Dim 8 EWPD now  
known. One can study the  
error induced in SMEFT 
truncation in this controlled 
and ideal example.

Taylor expand obs 
to second order.

SMEFT EWPD
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Once you know  

You just Taylor expand to the desired order using the geo SMEFT results 

EWPD LEP legacy

EWPD is essentially solved in closed form. 

Consider a             coupling to a fermion bilinear.

Compact all            orders answer!
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Figure 3. The green/yellow/gray contours correspond to the 68%/95%/99.9% CL two parame-
ter fit determined by ��

2
O(v4/⇤4), while the red rings correspond to the same CL determined using

��
2
O(v2/⇤2). In the top panels the free parameters are CHD and CHWB , while in the bottom panels

the free parameters are CHD and C
(6)
H`

. Note that the axes ranges vary from panel to panel. In the
left panels, we have taken the scale ⇤ = 1 TeV, while in the right panels ⇤ = 2 TeV. All calculations
use the m̂W scheme.

6.1 U(1) kinetic mixing

In this model, a heavy U(1) gauge boson Kµ with Stueckelberg mass [62] mK kinetically

mixes with Bµ, the U(1)Y gauge boson in the SM. The SM Lagrangian is extended with the

UV Lagrangian

�L = �
1

4
Kµ⌫K

µ⌫ +
1

2
m

2

KKµK
µ
�

k

2
B

µ⌫
Kµ⌫ , (6.1)

where the field strength is Kµ⌫ = @µK⌫ � @⌫Kµ. Integrating out the heavy K
µ field, the

matching pattern in the SMEFT, with geoSMEFT operator form conventions, is given in

Table 8 and Table 9. This weakly coupled, renormalizable model has one scale and one

coupling, but its matching pattern does not follow the pattern claimed to follow from a

UV of this form in some literature. The matching pattern is consistent with the results of

Ref. [16, 47–49].
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E.g. try classic S-T plot: Zero all dimension-6 operators except 
 CHD ~ T,  CHWB ~ S but leave all dimension-8 on. Set all dimension-8 

coefficients to 1 (tree) or 0.01 (loop) and fix , then compare  
ellipses with and without dimension-8 terms

Λ χ2

Redo classic SMEFT LEP1 analysis to  𝒪(1/Λ4)
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χ2

can repeat for other 2-d projections
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CHD,min, CHWB,min ∼ 0.01 ∼ 𝒪(v4/Λ4)



# operators small and remains ~fixed for increasing mass dimension

Mass Dimension

Field space connection 6 8 10 12 14

hIJ(φ)(Dµφ)I(Dµφ)J 2 2 2 2 2

gAB(φ)WA
µνWB,µν 3 4 4 4 4

kIJA(φ)(Dµφ)I(Dνφ)JWA
µν 0 3 4 4 4

fABC(φ)WA
µνWB,νρWC,µ

ρ 1 2 2 2 2

Y u
pr(φ)Q̄u+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y d
pr(φ)Q̄d+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y e
pr(φ)L̄e+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

de,prA (φ)L̄σµνeWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

du,prA (φ)Q̄σµνuWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

dd,prA (φ)Q̄σµνdWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

LψR

pr,A(φ)(D
µφ)J (ψ̄p,RγµσAψr,R) N2

f N2
f N2

f N2
f N2

f

LψL

pr,A(φ)(D
µφ)J(ψ̄p,LγµσAψr,L) 2N2

f 4N2
f 4N2

f 4N2
f 4N2

f

Table 1. Counting of operators contributing to two- and three-point functions from Hilbert series.
These results are consistent with Ref. [4].

The minimum is redefined order by order in the power counting expansion

〈H†H〉 =
v2

2

(

1 +
3C(6)

H v2

4λ
+ v4

9 (C(6)
H )2 + 4C(8)

H λ

8λ2
+ · · ·

)

≡
v̄2T
2
. (3.2)

This generalization of the expectation value simplifies at leading order in 1/Λ2 to the vev

of the SM. Including the leading 1/Λ2 correction, the result is that of Ref. [26], the 1/Λ4

correction is as given in Ref. [18], etc. At higher orders in the polynomial expansion of H†H

that results from taking the derivative of the potential, numerical methods must be used to

find a minimum due to the Abel–Ruffini theorem. Note that this also means that expanding

out the vev dependence in a formal all-orders result to a fixed order necessarily requires

numerical methods.

The expectation values of the field space connections is also denoted by 〈〉 and a critical

role is played by
√
h
IJ

= 〈hIJ 〉1/2, and √gAB = 〈gAB〉1/2. The
√
h and

√
g depend on v̄T .

3.1 Scalar bilinear metric: hIJ(φ)

The relevant terms in L(6,8) for the scalar metric are [18]

L(6,8) ⊇ C(6)
H!(H

†H)!(H†H) + C(6)
HD(H

†DµH)$(H†DµH) (3.3)

+ C(8)
HD(H

†H)2(DµH)†(DµH) + C(8)
H,D2(H

†H)(H†σaH)(DµH)† σa (DµH).
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L(6,8) ⊇ C(6)
H!(H

†H)!(H†H) + C(6)
HD(H

†DµH)$(H†DµH) (3.3)

+ C(8)
HD(H

†H)2(DµH)†(DµH) + C(8)
H,D2(H

†H)(H†σaH)(DµH)† σa (DµH).
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Example:

We define the Yukawa connection in Eqn. (2.19), where

Y e
pr(φI) = −H(φI)[Ye]

†
pr +H(φI)

∞
∑

n=0

C(6+2n)
eH
pr

(

φ2

2

)n

, (3.21)

Y d
pr(φI) = −H(φI)[Yd]

†
pr +H(φI)

∞
∑

n=0

C(6+2n)
dH
pr

(

φ2

2

)n

, (3.22)

Y u
pr(φI) = −H̃(φI)[Yu]

†
pr + H̃(φI)

∞
∑

n=0

C(6+2n)
uH
pr

(

φ2

2

)n

. (3.23)

3.4 (Dµφ)I ψ̄ Γµψ

The class seven operators in the Warsaw basis, and extended to higher mass dimensions, are

of the form

Q1,(6+2n)
Hψ
pr

= (H†H)nH†←→iDµHψ̄pγµψr,

Q3,(6+2n)
Hψ
pr

= (H†H)nH†←→iDµ
aHψ̄pγµσaψr,

Q2,(8+2n)
Hψ
pr

= (H†H)n(H†σaH)H†←→iDµHψ̄pγµσaψr,

Qε,(8+2n)
Hψ
pr

= εabc (H
†H)n (H†σcH)H†←→iDµ

bHψ̄pγµσaψr. (3.24)

where
←→
D µ

a = (σaDµ −
←−
Dµ σa). Connections corresponding to these operators are defined as

Lψ,prJ,A = −(φγ4)JδA4

∞
∑

n=0

C1,(6+2n)
Hψ
pr

(

φ2

2

)n

− (φγA)J(1− δA4)
∞
∑

n=0

C3,(6+2n)
HψL
pr

(

φ2

2

)n

(3.25)

+
1

2
(φγ4)J (1− δA4)

(

φKΓK
A,Lφ

L
)

∞
∑

n=0

C2,(8+2n)
HψL
pr

(

φ2

2

)n

+
εABC

2
(φγB)J

(

φKΓK
C,Lφ

L
)

∞
∑

n=0

Cε,(8+2n)
HψL
pr

(

φ2

2

)n

.

Similarly one can define the right-handed charged current connection

Lud,pr
J =

δ2L
δ(Dµφ)Jδ(ūpγµdr)

=
φ̃I
2
(−ΓI

4,J + iγI4,J )
∞
∑

n=0

C(6+2n)
Hud
pr

(

φ2

2

)n

, (3.26)

where Q(6+2n)
Hud
pr

= (H†H)n(H̃iDµH)ūpγµdr.
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Similarly, D2ψ can be reduced as

D2ψ = DµDνg
µνψ = DµDν(γ

µγν + iσµν)ψ ⇒ EOM and higher-points, (2.8)

where σµν = i
2(γµγν − γνγµ). In what follows, when D2F appears, it is replaced in terms of

EOM terms and higher-point functions for these reasons. Explicitly reducing operator forms

by the EOM, when possible, in favour of other composite operators, has a key role in these

arguments.

Now consider higher-derivative contributions to three-point functions. Explicit appear-

ances of D2F are removed due to the proceeding argument. Further, a general combination

of derivatives, acting on three general SM fields F1,2,3,

f(H)(DµF1)(DνF2)D{µν}F3, (2.9)

is removable in terms of EOM terms and higher-point functions, using integration by parts:

f(H)(DµF1)(DνF2)D{µν}F3 (2.10)

=− f(H)
[

(D2F1)(DνF2) + (DµF1)(DµDνF2) + (DµDνF1)(DµF2) + (DνF1)(D
2F2)

]

(DνF3)

− (Dµf(H)) [(DµF1)(DνF2) + (DνF1)(DµF2)] (DνF3)

⇒− f(H) [(DµF1)(DµDνF2) + (DµDνF1)(DµF2)] (DνF3) + EOM and higher-points

⇒− f(H)(D[µ,ν]F1)(DµF2)(DνF3) + f(H)(DµF1)(DµF2)(D
2F3) + EOM and higher-points

⇒ EOM and higher-points.

As a result, in general, an operator with four or more derivatives acting on three (possibly

different) fields Fi can be reduced out of three-point amplitudes.

When considering field space connections that can reduce to three-point functions when

a vacuum expectation value is taken, we also use

f(φ)F1 (DµF2) (DµF3)⇒ (Dµf(φ)) (DµF1)F2 F3 +
1

2
(D2f(φ))F1 F2 F3 + EOM ,(2.11)

to conventionally move derivative terms onto scalar fields. After reducing the possible field

space connections using these arguments systematically, and integrating by parts, a minimal

generalization of field space connections for CP even electroweak bosonic two- and three-point

amplitudes is composed of

hIJ (φ)(Dµφ)
I(Dµφ)

J , gAB(φ)WA
µνWB,µν , kAIJ(φ)(Dµφ)

I(Dνφ)
J Wµν

A ,

fABC(φ)WA
µνWB,νρWC,µ

ρ ,

and the scalar potential V (φ).

The minimal set of field space connections involving fermionic field in two- and three-point

functions is

Y (φ)ψ̄1ψ2, LI,A(φ)ψ̄1γ
µτAψ2(Dµφ)

I , dA(φ)ψ̄1σ
µνψ2WA

µν ,

– 6 –

contributing 
operators

compact form for connection:

ijhifs!ejn/!wfstjpot!
pg!ｃdmbtt!8ｄ!
pqfsbupst

ofx!fggfdut!
gspn!d ≥ 8
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What about GF?
GF involves more than quadratic terms:

However, since GF derived at muon mass scale  
and SM term is from L4, # of higher dimensional contributions is 

dramatically reduced

(D ∼ mμ ≪ Λ)

All orders result is possible even for contact terms:

[Hays, Helset, Martin, Trott 2007.00565]

C(8+2n)
4ℓ,2 (H†H)1+n (ℓ̄2γμσiℓ2) (ℓ̄1γμσiℓ1) iC(8+2n)

4ℓ,5 ϵijk (H†H)n (H†σiH) (ℓ̄2γμσjℓ2) (ℓ̄1γμσkℓ1)

𝒢4pt
F =

1
v̄2

T (C̃(6)
μccμ + C̃(6)

μμμe +
C̃(8+2n)

4ℓ,2

2n
+

C̃(8+2n)
4ℓ,5

2n )
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