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We compute the top quark contribution to the two-loop amplitude for on-shell W/Z boson pair production in gluon fusion. Exact
dependence on the top quark mass is retained. For each phase space point the integral reduction is performed numerically and the
master integrals are evaluated using the auxiliary mass flow method, allowing fast computation of the amplitude with very high precision.

1 Motivation

Experiments at the Large Hadron Collider (LHC) continue to decrease statistical and systematic uncertainties and this calls
for more accurate theoretical predictions. In the context of perturbative quantum chromodynamics this can be achieved by
calculating processes to higher loop order. Furthermore, as the collision energy is increased, internal massive particles become
increasingly important. On this poster we present calculations at two-loop order for electroweak diboson production
in gluon fusion,

g(p1) + g(p2)→ V (p3) + V (p4) (1)

where V = W,Z and we retain full dependence on the top quark mass, mt. All other quarks are considered massless.
Despite being loop-induced, this production channel becomes significant due to the high gluon flux and event selection.
These processes serve as important backgrounds to Higgs production and a precise prediction can be used to constrain
the Higgs width as well as anomalous gauge couplings. At leading order inclusion of top mass effects increases the gluon fusion
production channel by about 10 %, see figure 1 below. At high pT it even becomes the dominant contribution, see figure 2.

Figure 1. Effect on total cross section of third quark generation as
function of mt. Campbell et al. 2011.

Figure 2. Distribution in transverse momentum, pT , split in massless and
massive quark generations. Campbell et al. 2011.

2 Amplitude calculation

There are 136 and 138 diagrams for gg → WW and
gg → ZZ respectively. In both cases we ignore diagrams
with an intermediate Higgs or Z boson and decompose the
amplitude according to colour and Lorentz structure. In both
cases there are 20 parity-even Lorentz tensor structures. For
the final state ZZ there is no parity-odd contribution due to
charge-parity conservation, while for WW this contribution
can be projected onto another 18 tensor structures (Binoth
et al. 2006).
For ZZ the dependence on γ5 can for all but the fac-
torisable two-loop diagrams be treated naively with anti-
commutativity. For the factorisable diagrams and the WW
process we employ the Larin scheme and replace

γ5γ
µ→ i

3!
εµνσργνγσγρ. (2)

Figure 3. Representative diagrams for gg → V V . The internal quark
loop contains top quarks as well as bottom quarks for the WW final
state.

We apply symmetries between the diagrams and perform integral reduction via integration-by-parts identities. The reduction
can be performed numerically for each phase space point setting the masses to integer values close to their physical values

mt = 173 GeV, mW = 80 GeV, mZ = 91 GeV, (3)

and using rational numbers for the Mandelstam variables s and t. A numerical reduction can be completed in a few
hours with KIRA (Klappert et al. 2020) on a single core using reasonable memory resources.

3 Auxiliary mass flow

To evaluate the master integrals we employ the auxiliary mass flow method (Liu
et al. 2018, 2021). The master integrals are defined by

I ∝
∫ 2∏

i=1

ddli

9∏
a=1

1

[q2a − (m2
a − i0+)]νa

. (4)

where Da = qa−ma and qa are linear combinations of loop and external momenta.
The only non-zero masses come from top quark propagators. We add an imaginary
part to the massive propagators

m2
t → m2

t − iη (5)

and solve a system of ordinary differential equations at each phase space point

∂xI =MI, m2
t − iη = m2

t(1 + x). (6)

The boundary condition is taken at infinity x→ −i∞ and the physical mass
is at x = 0. Several regions contribute in the boundary limit. The procedure is

Figure 4. Transporting through complex mass
space using a differential equation. Starting
from the boundary at infinity, via regular
points, to the physical mass. Step size is
limited by singularities of the equation.

Figure 5. For gg → ZZ the only required
integrals at the boundary are massive tadpole
and massless bubbles.

• Expand I around the boundary in variable y = x−1 = 0,

I =

M∑
j

εj
N∑
k

∑
l

cjkly
k lnl y + . . . (7)

• Evaluate and expand around a regular point,

I =

M∑
j

εj
N∑
k=0

cjkx
′k + . . . (8)

• Repeat the previous step until reaching the physical point x = 0.

• Arbitrary precision achieved with long expansions and/or short steps.

4 Results

We parametrise partonic phase space by relative velocity and scattering angle and plot the interference between the two-loop
finite remainder and one-loop helicity amplitude
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. (9)

Figure 6. gg → ZZ for colour CA and helicity LLLL. Figure 7. gg → ZZ for colour CF and helicity LLLR.

The pole structure of the renormalised amplitudes has been checked against the universal infra-red pole structure (Catani 1998).
In the bulk of phase space the amplitude is accurate to more than 10 digits. Only examples are shown here, the full results
for gg → WW and gg → ZZ can be found in our publications (2009.03742 and 2101.12095 respectively).


