The Singly-Charged Scalar Singlet as the Origin of Neutrino Masses

JHEP 05 (2021) 122; e-Print 2102.09898

Tobias Felkl

Sydney Consortium of Particle Physics & Cosmology School of Physics, University of New South Wales, Sydney, Australia

> European Physical Society Conference on High Energy Physics 2021

$$\mathcal{L} \supset \mathcal{L}_{SM} - h^* (D^\mu D_\mu + M_h)h - (y_h^{ij}L_iL_jh + h.c.)$$

Lepton number: Continuous global U(1) symmetry. $L_i \sim 1$, $\bar{e}_i \sim -1$, $h \sim -2$

$$\mathcal{L} \supset \mathcal{L}_{SM} - h^* (D^\mu D_\mu + M_h)h - (y_h^{ij}L_iL_jh + h.c.)$$

Lepton number: Continuous global U(1) symmetry. $L_i \sim 1$, $\bar{e}_i \sim -1$, $h \sim -2$

How to model-independently study the generation of Majorana neutrino masses and their phenomenology?

$$\mathcal{L} \supset \mathcal{L}_{SM} - h^* (D^\mu D_\mu + M_h)h - (y_h^{ij}L_iL_jh + h.c.)$$

Lepton number: Continuous global U(1) symmetry. $L_i \sim 1$, $ar{e}_i \sim -1$, $h \sim -2$

How to model-independently study the generation of Majorana neutrino masses and their phenomenology?

Antisymmetric coupling matrix:

$$y_{h} = \begin{pmatrix} 0 & y_{h}^{e\mu} & y_{h}^{e\tau} \\ -y_{h}^{e\mu} & 0 & y_{h}^{\mu\tau} \\ -y_{h}^{e\tau} & -y_{h}^{\mu\tau} & 0 \end{pmatrix}$$

 \rightarrow Eigenvector $v_h = (y_h^{\mu\tau}, -y_h^{e\tau}, y_h^{e\mu})^T$ with eigenvalue zero, $y_h v_h = 0$.

Neutrino Mass Matrix: Linear Case

Eigenvector $v_h = (y_h^{\mu\tau}, -y_h^{e\tau}, y_h^{e\mu})^T$ with eigenvalue zero, $y_h v_h = 0$.

Most general form of neutrino mass matrix: $M_{\nu} = U^* m_{\text{diag}} U^{\dagger} = X y_h - y_h X^T$

Neutrino Mass Matrix: Linear Case

Eigenvector $v_h = (y_h^{\mu\tau}, -y_h^{e\tau}, y_h^{e\mu})^T$ with eigenvalue zero, $y_h v_h = 0$.

Most general form of neutrino mass matrix: $M_{\nu} = U^* m_{\text{diag}} U^{\dagger} = X y_h - y_h X^T \rightarrow \text{All three neutrinos in general massive.}$

 $\Rightarrow \quad \textbf{v}_h^{\mathsf{T}} \textbf{U}^* \textbf{m}_{\mathsf{diag}} \textbf{U}^{\dagger} \textbf{v}_h = \textbf{0}$

Neutrino Mass Matrix: Linear Case

Example: Effective dim-5 operator $\frac{c^{ij}}{\Lambda}h^*\bar{e}_iL_jH$ + h.c. which violates LN $\Rightarrow M_{\nu} \approx \frac{v^2}{(4\pi)^2\Lambda} \left(c \, y_e \, y_h - y_h y_e \, c^T\right)$

Zee, Phys. Lett. B93 389 (1980) Cheng, Li, Phys., Rev. D22 2860 (1980) Wolfenstein, Nucl. Phys. B175 93 (1980) HG, Ohlsson, Riad, Wiren, JHEP 04, 130 (2017)

Cepedello, Hirsch, Helo, JHEP 07, 079 (2017)

Neutrino Mass Matrix: Quadratic Case

Eigenvector $v_h = (y_h^{\mu\tau}, -y_h^{e\tau}, y_h^{e\mu})^T$ with eigenvalue zero, $y_h v_h = 0$.

Most general form of neutrino mass matrix: $M_{
u} = U^* m_{ ext{diag}} U^\dagger = y_h S y_h$

Neutrino Mass Matrix: Quadratic Case

Eigenvector $v_h = (y_h^{\mu\tau}, -y_h^{e\tau}, y_h^{e\mu})^T$ with eigenvalue zero, $y_h v_h = 0$.

Most general form of neutrino mass matrix: $M_{\nu} = U^* m_{\text{diag}} U^{\dagger} = y_h S y_h \rightarrow$ One neutrino remains massless.

$$\Rightarrow m_{\text{diag}} \mathbf{U}^{\dagger} \mathbf{v}_{h} = \mathbf{0}$$

Neutrino Mass Matrix: Quadratic Case

Example: Effective dim-5 operator $\frac{d^{ij}}{\Lambda}(h^*)^2 \bar{e}_i \bar{e}_j + h.c.$ which violates LN $\Rightarrow M_{\nu} \approx rac{v^2}{(4\pi)^4 \Lambda} y_h y_e \, d \, y_e \, y_h$

Zee, Phys. Lett. B161 141 (1985) Zee, Nucl. Phys. B264 99 (1986) (2003)Babu, Phys. Lett. B203 132 (1988) Nebot, Oliver, Palao, Santamaria, Phys. Rev. D77,

093013 (2008)

Krauss, Nasri, Trodden, Phys. Rev. D67, 085002

Neutrino-Mass Constraints

Eigenvector $v_h = (y_h^{\mu\tau}, -y_h^{e\tau}, y_h^{e\mu})^T$ with eigenvalue zero, $y_h v_h = 0$.

Derived constraints:

$$\begin{split} v_h^{\mathsf{T}} U^* m_{\text{diag}} U^{\dagger} v_h &= 0, \qquad \text{Linear case.} \\ m_{\text{diag}} U^{\dagger} v_h &= 0, \qquad \text{Quadratic case.} \end{split}$$

They ...

- ... directly relate the couplings y_h^{ij} to measured neutrino data.
- ... provide a *necessary condition* for the correct description of neutrino masses in the SM extended by *h*.
- ... are independent of the mechanism of lepton-number breaking.

How to solve the constraint? Example: Quadratic case

Constraints yield four real conditions for both neutrino-mass orderings:

Normal Ordering

Inverted Ordering

$$\frac{y_{h}^{e^{\tau}}}{y_{h}^{\mu\tau}} = \tan(\theta_{12})\frac{\cos(\theta_{23})}{\cos(\theta_{13})} + \tan(\theta_{13})\sin(\theta_{23})e^{i\delta} \qquad \qquad \frac{y_{h}^{e^{\tau}}}{y_{h}^{\mu\tau}} = -\frac{\sin(\theta_{23})}{\tan(\theta_{13})}e^{i\delta} \\ \frac{y_{h}^{e^{\mu}}}{y_{h}^{\mu\tau}} = \tan(\theta_{12})\frac{\sin(\theta_{23})}{\cos(\theta_{13})} - \tan(\theta_{13})\cos(\theta_{23})e^{i\delta} \qquad \qquad \frac{y_{h}^{e^{\mu}}}{y_{h}^{\mu\tau}} = \frac{\cos(\theta_{23})}{\tan(\theta_{13})}e^{i\delta}$$

- RHS: Assign pseudo-random variates from normal distributions. (NuFIT) Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP 09, 178 (2020)
- LHS: Assign random values to one magnitude and one phase \rightarrow Rest fixed by constraint.
- Mass *M_h* ∈ [350 GeV, 100 TeV]

Linear case: One very lengthy complex expression, see next slide ...

Constraint in the Linear Case

$$\begin{split} & \left(\left(c_{13}^{2}m_{3}c_{23}^{2} + e^{-2i\eta_{2}}m_{2} \left(e^{-i\delta}c_{23}s_{12}s_{13} + c_{12}s_{23} \right)^{2} + e^{-2i\eta_{1}}m_{1} \left(e^{-i\delta}c_{12}c_{23}s_{13} - s_{12}s_{23} \right)^{2} \right) y_{h}^{e\mu} \\ & - \left(c_{23}m_{3}s_{23}c_{13}^{2} + e^{-2i\eta_{1}}m_{1} \left(e^{-i\delta}c_{12}c_{23}s_{13} - s_{12}s_{23} \right) \left(c_{23}s_{12} + e^{-i\delta}c_{12}s_{13}s_{23} \right) \right) \\ & - e^{-2i\eta_{2}}m_{2} \left(e^{-i\delta}c_{23}s_{12}s_{13} + c_{12}s_{23} \right) \left(c_{12}c_{23} - e^{-i\delta}s_{12}s_{13}s_{23} \right) \right) y_{h}^{e\pi} \\ & + c_{13} \left(e^{i\delta}c_{23}m_{3}s_{13} - e^{-2i\eta_{2}}m_{2}s_{12} \left(e^{-i\delta}c_{23}s_{12}s_{13} + c_{12}s_{23} \right) + e^{-2i\eta_{1}}c_{12}m_{1} \left(s_{12}s_{23} - e^{-i\delta}c_{12}c_{23}s_{13} \right) \right) y_{h}^{\mu\tau} \right) y_{h}^{\mu\tau} \\ & - \left(\left(c_{23}m_{3}s_{23}c_{13}^{2} + e^{-2i\eta_{1}}m_{1} \left(e^{-i\delta}c_{12}c_{23}s_{13} - s_{12}s_{23} \right) \left(c_{23}s_{12} + e^{-i\delta}c_{12}s_{13}s_{23} \right) \right) \\ & - e^{-2i\eta_{2}}m_{2} \left(e^{-i\delta}c_{23}s_{12}s_{13} + c_{12}s_{23} \right) \left(c_{12}c_{23} - e^{-i\delta}s_{12}s_{13}s_{23} \right) \right) y_{h}^{e\mu} \\ & - \left(\left(c_{23}m_{3}s_{23}c_{13}^{2} + e^{-2i\eta_{1}}m_{1} \left(e^{-i\delta}c_{12}c_{23}s_{13} - s_{12}s_{23} \right) \left(c_{23}s_{12} + e^{-i\delta}c_{12}s_{13}s_{23} \right) \right) y_{h}^{e\mu} \\ & - \left(c_{13}^{2}m_{3}s_{23}^{2} + e^{-2i\eta_{1}}m_{1} \left(c_{23}s_{12} + e^{-i\delta}c_{12}s_{13}s_{23} \right) \right) y_{h}^{e\mu} \\ & - \left(c_{13}^{2}m_{3}s_{23}^{2} + e^{-2i\eta_{1}}m_{1} \left(c_{23}s_{12} + e^{-i\delta}c_{12}s_{13}s_{23} \right)^{2} + e^{-2i\eta_{2}}m_{2} \left(c_{12}c_{23} - e^{-i\delta}s_{12}s_{13}s_{23} \right)^{2} \right) y_{h}^{e\tau} \\ & - \left(m_{3} - e^{-2i(\delta+\eta_{1})}m_{1}s_{13}s_{23}c_{12}^{2} + e^{-i\delta}c_{23} \left(e^{-2i\eta_{1}}m_{1} - e^{-2i\eta_{2}}m_{2} \right) s_{12}c_{12} \\ & - \left(m_{3} - e^{-2i(\delta+\eta_{1})}m_{1}s_{13}s_{23}c_{12}^{2} + e^{-i\delta}c_{23} \left(e^{-2i\eta_{1}}m_{1} - e^{-2i\eta_{2}}m_{2} \right) s_{12}c_{12} \\ & - \left(m_{3} - e^{-2i(\delta+\eta_{1})}m_{1}s_{13}s_{23}c_{12}^{2} + e^{-i\delta}c_{23} \left(e^{-2i\eta_{1}}m_{1} - e^{-2i\eta_{2}}m_{2} \right) s_{12}c_{12} \\ & - \left(m_{3} - e^{-2i(\delta+\eta_{2})}m_{2}s_{12}^{2} \right) s_{13}s_{23} \right) y_{h}^{\epsilon\tau} + \left(e^{-2i\eta_{2}}m_{2}s_{12}^{2}c_{13}^{2} + e^{-2i\eta_{1}}c_{13}^{2} + e^{2i\delta}m_{3}s_{13}^{2} \right) y_{h}^{\mu\tau}$$

Lepton-Flavour Non-Universality

Define the ratios of effective leptonic gauge couplings inferred from $I_i \rightarrow I_j \bar{\nu} \nu$:

$$\sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\tau \to e}}} \propto \frac{G_{\tau \mu}}{G_{\tau e}} = \frac{g_{\mu}}{g_{e}}, \quad \sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau \mu}}{G_{\mu e}} = \frac{g_{\tau}}{g_{e}}, \quad \sqrt[4]{\frac{\Gamma_{\tau \to e}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau e}}{G_{\mu e}} = \frac{g_{\tau}}{g_{\mu}}$$

They are all equal to one in the SM (LFU).

Pich, Prog.Part.Nucl.Phys. 75 (2014) 41-85

Lepton-Flavour Non-Universality

Define the ratios of effective leptonic gauge couplings inferred from $l_i \rightarrow l_j \bar{\nu} \nu$:

$$\sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\tau \to e}}} \propto \frac{G_{\tau \mu}}{G_{\tau e}} = \frac{g_{\mu}}{g_{e}}, \quad \sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau \mu}}{G_{\mu e}} = \frac{g_{\tau}}{g_{e}}, \quad \sqrt[4]{\frac{\Gamma_{\tau \to e}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau e}}{G_{\mu e}} = \frac{g_{\tau}}{g_{\mu}}$$

They are all equal to one in the SM (LFU). Current best-fit values:

$$\left|\frac{g_{\mu}}{g_{e}}\right| = 1.0018 \pm 0.0032, \quad \left|\frac{g_{\tau}}{g_{e}}\right| = 1.0030 \pm 0.0030, \quad \left|\frac{g_{\tau}}{g_{\mu}}\right| = 1.0011 \pm 0.0030$$

Gersabeck, Pich, Comptes Rendus Physique 21 (2020) 75

Lepton-Flavour Non-Universality

Define the ratios of effective leptonic gauge couplings inferred from $l_i \rightarrow l_j \bar{\nu} \nu$:

$$\sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\tau \to e}}} \propto \frac{G_{\tau \mu}}{G_{\tau e}} = \frac{g_{\mu}}{g_{e}}, \quad \sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau \mu}}{G_{\mu e}} = \frac{g_{\tau}}{g_{e}}, \quad \sqrt[4]{\frac{\Gamma_{\tau \to e}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau e}}{G_{\mu e}} = \frac{g_{\tau}}{g_{\mu}}$$

They are all equal to one in the SM (LFU). Current best-fit values:

$$\left|\frac{g_{\mu}}{g_{e}}\right| = 1.0018 \pm 0.0032, \quad \left|\frac{g_{\tau}}{g_{e}}\right| = 1.0030 \pm 0.0030, \quad \left|\frac{g_{\tau}}{g_{\mu}}\right| = 1.0011 \pm 0.0030$$

Gersabeck, Pich, Comptes Rendus Physique 21 (2020) 75

- h contributes to g_i/g_j at tree level
- 1σ ranges of $|y_h^{e\mu}|/M_h$, $|y_h^{\mu\tau}|/M_h$ determined in 2012.09845
- Effect in $\mu \rightarrow e$ explains CAA (indirectly: $G_F \rightarrow |V_{us}^{CKM}|$)

Crivellin, Kirk, Manzari, Panizzi, Phys. Rev. D. 103, 073002 (2021)

$$\begin{split} \frac{g_{\mu}}{g_{e}} &\approx 1 + \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{\mu\tau}|^{2} - |y_{h}^{e\tau}|^{2}}{M_{h}^{2}} \\ \frac{g_{\tau}}{g_{e}} &\approx 1 + \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{\mu\tau}|^{2} - |y_{h}^{e\mu}|^{2}}{M_{h}^{2}} \\ \frac{g_{\tau}}{g_{\mu}} &\approx 1 + \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{e\tau}|^{2} - |y_{h}^{e\mu}|^{2}}{M_{h}^{2}} \end{split}$$

Solution to the Neutrino-Mass Constraints

Neutrino-mass constraints shape available parameter space for y_h^{ij} non-trivially.

Solution to the Neutrino-Mass Constraints

Neutrino-mass constraints shape available parameter space for y_h^{ij} non-trivially.

• Quadratic case (brown): Very predictive, stringently constrained.

Solution to the Neutrino-Mass Constraints

Neutrino-mass constraints shape available parameter space for y_h^{ij} non-trivially.

- Quadratic case (brown): Very predictive, stringently constrained.
- Linear case (blue, black): Less predictive, but simultaneous explanation of LFU anomalies (V^{CKM}_{us}, l_i → l_j ν
 [¯]νν; in red) at 1σ possible.

Quadratic Case: Branching Ratios

$$\Gamma(h \to \ell_a \nu_b) = \Gamma(h \to \ell_b \nu_a) = \frac{|y_h^{ab}|^2}{4\pi} M_h$$

Br $(h \to \ell_a \nu) = \frac{\sum_{b \neq a} |y_h^{ab}|^2}{2(|y_h^{e\mu}|^2 + |y_h^{\mu\tau}|^2 + |y_h^{\mu\tau}|^2)}$

$$\delta M_W^2 = -\frac{M_W^2}{\sqrt{2}G_F} \left| 1 - \frac{M_W M_Z}{2M_W^2 - M_Z^2} \right| \frac{|y_h^{e\mu}|^2}{M_h^2}$$

Radiative Charged-Lepton Decays

$$\begin{split} \mathsf{Br}(\mu \to e\gamma) &= \mathsf{Br}(\mu \to e\nu\bar{\nu}) \frac{\alpha_{\mathsf{EM}}}{48\pi G_F^2} \frac{|y_h^{e\tau} y_h^{\mu\tau}|^2}{M_h^4},\\ \mathsf{Br}(\tau \to e\gamma) &= \mathsf{Br}(\tau \to e\nu\bar{\nu}) \frac{\alpha_{\mathsf{EM}}}{48\pi G_F^2} \frac{|y_h^{e\mu} y_h^{\mu\tau}|^2}{M_h^4},\\ \mathsf{Br}(\tau \to \mu\gamma) &= \mathsf{Br}(\tau \to \mu\nu\bar{\nu}) \frac{\alpha_{\mathsf{EM}}}{48\pi G_F^2} \frac{|y_h^{e\mu} y_h^{e\tau}|^2}{M_h^4}. \end{split}$$

Tobias Felkl

Assumption: Neutrino masses generated via a singly-charged scalar singlet. \rightarrow **Model-independent constraints** for couplings y_b^{ij} in terms of neutrino data.

Discussion of two distinct structures of the neutrino mass matrix:

- Linear case: Zee Model and variants, ...
- *Quadratic case*: **Zee-Babu Model**, **Krauss-Nasri-Trodden Model** and their variants, ...

Felkl, T., Herrero-García, J. & Schmidt, M. A. **The singly-charged scalar singlet as the origin of neutrino masses.** J. High Energ. Phys. 2021, 122 (2021). arxiv: e-Print 2102.09898

Thank you for watching the talk!

Back-Up

Conventions for the Neutrino Sector

Neutrino mass eigenstates ν_i and flavour eigenstates related ν_{α} via

$$\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \nu_{i}. \tag{1}$$

PMNS matrix:

$$U = P U_{23} U_{13} U_{12} U_{Maj}$$
 (2)

with

$$U_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}, \quad U_{13} = \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}, \quad (3)$$
$$U_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (4)$$

 $U_{\mathsf{Maj}} \equiv \mathsf{diag}(e^{i \eta_1}, e^{i \eta_2}, 1) \text{ and } P = \mathsf{diag}(e^{i \alpha_1}, e^{i \alpha_2}, e^{i \alpha_3}).$

Squared-mass differences $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$:

$$m_1 = m_0, \quad m_2 = \sqrt{\Delta m_{21}^2 + m_0^2}, \quad m_3 = \sqrt{\Delta m_{31}^2 + m_0^2}$$
 (5)

in the case of Normal Ordering (NO) $m_1 < m_2 \ll m_3$, and

$$m_1 = \sqrt{|\Delta m_{32}^2| - \Delta m_{21}^2 + m_0^2}, \quad m_2 = \sqrt{|\Delta m_{32}^2| + m_0^2}, \quad m_3 = m_0$$
 (6)

in the case of Inverted Ordering (IO) $m_3 \ll m_1 < m_2$.

m_e [keV]	m_{μ} [MeV] $m_{ au}$ [Ge	V] G _F	$\left[\frac{1}{\text{GeV}^2}\right]$	$\alpha_{\rm EM}^{-1}$	М	I _Z [GeV]	_
510.9989	105.	6584 1.777	7 1.166	38×10^{-5}	137.0359	99 9	1.1535	
		$\Delta m_{3/}^2 [10^{-3} {\rm eV}^2$] Δm_{21}^2	$[10^{-5} eV^2]$	δ [r	ad]		
	NO	2.517 ± 0.026	7.42	2 ± 0.20	3.44 ±	0.42		
	10	-2.498 ± 0.028	3 7.42	2 ± 0.20	4.92 \pm	0.45		
		$sin^2(\theta_{12})$	sin	$^{2}(\theta_{13})$	sin ² (θ ₂₃)		
	NO	0.304 ± 0.012	0.022 19	0 ± 0.000 62	0.573 \pm	0.016		
	10	0.304 ± 0.012	0.022 38	3 ± 0.000 62	0.575 \pm	0.016		
	$ y_h^{ij} $	$\arg(y_h^{ei})$	$arg(y_h^{\mu\tau})$	m ₀ [meV]	$\eta_{1,2}$ [ra	d] /	И _ћ [GeV]
Prior	Log-Fla	t Flat	Fixed	Log	-Flat	Flat	I	Log-Flat
Range	$[10^{-4}, 2$	π] [0, 2π]	0	$[10^{-4}, 10^{-4}]$	30] (NO) 15] (IO)	$[0, \pi]$	[350, 10 ⁵]

 $\Delta m_{31}^2 > 0$ for NO, and $\Delta m_{32}^2 < 0$ for IO.

Zyla et al. (PDG), PTEP 2020, 083C01 (2020) Freitas, 2020

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, 2020

Observables

	Experime	Scan: Max.			
Observable	Current Bound	Future Sensitivity	NO	ю	
${\sf Br}(\mu o e\gamma)$	$4.2 imes 10^{-13}$ (90% CL)	$6 imes 10^{-14}$	$4.2 imes 10^{-13}$	4.2×10^{-13}	
${\sf Br}(au o e\gamma)$	$3.3 imes10^{-8}$ (90% CL)	$3 imes 10^{-9}$	$6.4 imes 10^{-11}$	$\rm 4.9\times10^{-11}$	
$Br(\tau \rightarrow \mu \gamma)$	$4.4 imes10^{-8}$ (90% CL)	10 ⁻⁹	$1.6 imes 10^{-11}$	$\rm 1.6\times10^{-11}$	
${\sf Br}(\mu o 3e)$	10^{-12} (90% CL)	10^{-16}	10 ⁻¹²	10^{-12}	
${\sf Br}(au o 3e)$	$2.7 imes10^{-8}$ (90% CL)	4.3×10^{-10}	$\rm 6.6\times10^{-9}$	1.3×10^{-8}	
$Br(au ightarrow 3\mu)$	$2.1 imes10^{-8}$ (90% CL)	3.3×10^{-10}	3.0×10^{-9}	1.2×10^{-8}	
$ g_{\mu}/g_{e} $	$[0.9986, 1.0050]$ (2σ)		1.0050	1.0047	
$ g_{ au}/g_{\mu} $	$[0.9981, 1.0041]$ (2σ)		1.0009	1.0014	
$ g_{ au}/g_{e} $	[1.0000, 1.0060] (2σ) [0.9985, 1.0075] (3σ)		1.0048	1.0043	
$ \delta M_W $ [GeV]	0.018 (3 <i>σ</i>)		0.018	0.018	

Baldini et al. (MEG), Eur. Phys. J. C 76, 434 (2016) Baldini et al. (MEG II), Eur. Phys. J. C 78, 380 (2018) Aubert et al. (BaBar), Phys. Rev. Lett. 104, 021802 (2010) Altmannshofer et al. (Belle-II), PTEP 2019, 123C01 (2019) Bellgardt et al. (SINDRUM), Nucl. Phys. B 299, 1-6 (1988) Arndt et al. (Mu3e), 2020 Hayasaka et al., Phys. Lett. B 687, 139-143 (2010) Gersabeck, Pich, Comptes Rendus Physique 21, 75-92 (2020)

Zyla et al. (PDG), PTEP 2020, 083C01

Universality of Leptonic Gauge Couplings

$$\sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\tau \to e}}} \propto \frac{G_{\tau \mu}}{G_{\tau e}} = \frac{g_{\mu}}{g_{e}} \approx 1 + \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{\mu \tau}|^{2} - |y_{h}^{e \tau}|^{2}}{M_{h}^{2}} \equiv 1 + \epsilon_{ee}^{\tau \tau} - \epsilon_{\mu\mu}^{\tau \tau}, \quad (7)$$

$$\sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau \mu}}{G_{\mu e}} = \frac{g_{\tau}}{g_{e}} \approx 1 + \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{\mu \tau}|^{2} - |y_{h}^{e \mu}|^{2}}{M_{h}^{2}} \equiv 1 + \epsilon_{ee}^{\mu \mu} - \epsilon_{\mu\mu}^{\tau \tau}, \quad (8)$$

$$\sqrt[4]{\frac{\Gamma_{\tau \to e}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau e}}{G_{\mu e}} = \frac{g_{\tau}}{g_{\mu}} \approx 1 + \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{e \tau}|^{2} - |y_{h}^{e \mu}|^{2}}{M_{h}^{2}} \equiv 1 + \epsilon_{ee}^{\mu \mu} - \epsilon_{ee}^{\tau \tau}, \quad (9)$$

$$\sqrt[6]{\frac{1}{90}} \frac{0.004}{0.004} \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{e \tau}|^{2} - |y_{h}^{e \mu}|^{2}}{M_{h}^{2}} \equiv 1 + \epsilon_{ee}^{\mu \mu} - \epsilon_{ee}^{\tau \tau}, \quad (9)$$

$$\sqrt[6]{\frac{1}{90}} \frac{0.004}{0.004} \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{e \tau}|^{2} - |y_{h}^{e \mu}|^{2}}{M_{h}^{2}} \equiv 1 + \epsilon_{ee}^{\mu \mu} - \epsilon_{ee}^{\tau \tau}, \quad (9)$$

Tobias Felkl

Universality of Leptonic Gauge Couplings

$$\sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\tau \to e}}} \propto \frac{G_{\tau \mu}}{G_{\tau e}} = \frac{g_{\mu}}{g_{e}} \approx 1 + \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{\mu \tau}|^{2} - |y_{h}^{e\tau}|^{2}}{M_{h}^{2}} \equiv 1 + \epsilon_{ee}^{\tau \tau} - \epsilon_{\mu\mu}^{\tau \tau}, \quad (10)$$

$$\sqrt[4]{\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau \mu}}{G_{\mu e}} = \frac{g_{\tau}}{g_{e}} \approx 1 + \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{\mu \tau}|^{2} - |y_{h}^{e\mu}|^{2}}{M_{h}^{2}} \equiv 1 + \epsilon_{ee}^{\mu\mu} - \epsilon_{\mu\mu}^{\tau \tau}, \quad (11)$$

$$\sqrt[4]{\frac{\Gamma_{\tau \to e}}{\Gamma_{\mu \to e}}} \propto \frac{G_{\tau e}}{G_{\mu e}} = \frac{g_{\tau}}{g_{\mu}} \approx 1 + \frac{1}{\sqrt{2}G_{F}} \frac{|y_{h}^{e\tau}|^{2} - |y_{h}^{e\mu}|^{2}}{M_{h}^{2}} \equiv 1 + \epsilon_{ee}^{\mu\mu} - \epsilon_{ee}^{\tau \tau}, \quad (12)$$

$$\sqrt[6]{\frac{0.005}{0.004}} - \frac{0.005}{0.004} - \frac{0.001}{0.002} - \frac{0.002}{0.000} - \frac{0.002}{0.002} - \frac{0.004}{0.006} - \frac{0.001}{0.002} - \frac{0.002}{0.000} - \frac{0.002}{0.002} - \frac{0.004}{0.006} - \frac{0.001}{0.002} - \frac{0.002}{0.000} - \frac{0.002}{0.002} - \frac{0.004}{0.006} - \frac{0.001}{0.002} - \frac{0.004}{0.006} - \frac{0.001}{0.002} - \frac{0.002}{0.000} - \frac{0.002}{0.002} - \frac{0.004}{0.006} - \frac{0.001}{0.002} - \frac{0.002}{0.000} - \frac{0.002}{0.000}$$

Tobias Felkl

Cabibbo Angle Anomaly

Figure 1: (a) Determinations of $|V_{us}|$ from different sources^{7,8,6} $|V_{us}| = 0.22805(64) \equiv |V_{us}^{\beta}|$, which was determined, using CKM unitarity from $|V_{ud}| = 0.97365(15)$,⁹ is shown in red. (b) Possible NP interpretations leading to effects in β -decays (and $\mu \to e\bar{\nu}\nu$). Note that the

(b) reside AT interpretations learning to energy and $\mu \rightarrow e\nu\nu$). Note that the contribution of $\delta(We\nu)$ to $\mu \rightarrow e\bar{\nu}\nu$ cancels against the direct contribution of $\delta(We\nu)$ to the β -decay. $\delta(W\mu\nu)$, however, leads to an effect in β -decays.

Kirk, Contribution to Moriond EW 2021

Leptonic Non-Standard Interactions

$$\epsilon_{\tau e}^{e\mu} \equiv \frac{(y_h^{e\tau})^* y_h^{e\mu}}{\sqrt{2} G_F M_h^2} = -(\epsilon_{\mu\tau}^{ee})^*, \qquad \epsilon_{\mu\tau}^{e\mu} \equiv -\frac{(y_h^{e\mu})^* y_h^{\mu\tau}}{\sqrt{2} G_F M_h^2}$$
(13)

Radiative Charged-Lepton Decays

$$\mathsf{Br}(\mu \to e\gamma) = \mathsf{Br}(\mu \to e\nu\bar{\nu}) \frac{\alpha_{\mathsf{EM}}}{48\pi G_F^2} \frac{|y_h^{e\tau}y_h^{\mu\tau}|^2}{M_h^4}, \tag{14}$$

$$\mathsf{Br}(\tau \to e\gamma) = \mathsf{Br}(\tau \to e\nu\bar{\nu}) \frac{\alpha_{\mathsf{EM}}}{48\pi G_F^2} \frac{|\mathbf{y}_h^{e\mu}\mathbf{y}_h^{\mu\tau}|^2}{M_h^4}, \tag{15}$$

$$\mathsf{Br}(\tau \to \mu\gamma) = \mathsf{Br}(\tau \to \mu\nu\bar{\nu}) \frac{\alpha_{\mathsf{EM}}}{48\pi G_F^2} \frac{|y_h^{e\mu}y_h^{e\tau}|^2}{M_h^4}$$
(16)

Tobias Felkl

Coupling Magnitudes

Coupling Magnitudes

Figure: Plot of the coupling ratios $|y_h^{e\mu}|/|y_h^{\mu\tau}|$ and $|y_h^{e\tau}|/|y_h^{\mu\tau}|$ as obtained in the numerical scan if approximately 95.45% of the overall number of 547 991 (542 287) sample points generated for NO (IO) are taken into account. Each square shown to be compatible with NO (IO) contains at least 97 (74) sample points.

Branching Ratios

$$\Gamma(h \to \ell_a \nu_b) = \Gamma(h \to \ell_b \nu_a) = \frac{|y_h^{ab}|^2}{4\pi} M_h \tag{17}$$

$$\mathsf{Br}(h \to \ell_a \nu) = \frac{\sum_{b \neq a} |y_h^{ab}|^2}{2(|y_h^{e\mu}|^2 + |y_h^{e\tau}|^2 + |y_h^{\mu\tau}|^2)}$$
(18)

