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Modular invariance approach to the flavour problem is a relatively new, elegant and

promising approach to an old and essentially unresolved fundamental problem in particle

physics. It was proposed in F. Feruglio, arXiv:1706.08749 and has been intensively

developed in the last three years. The first phenomenologically viable (minimal in terms

of fields and parameters involved) lepton flavour model based on modular symmetry

appeared in June of 2018 (J.T. Penedo, STP, arXiv:1806.11040). Since then various

aspects of this approach were and continue to be extensively studied – the number of

publications on the topic exceeds 100.
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The talk: bottom-up approch to the flavour problem based on modular invariance.

The talk is based on the following articles.
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The Flavour Problem

Understanding the origins of flavour in both quark and lepton sectors, i.e., of the patterns

of quark masses and mixing, and of the charged lepton and neutrino masses and of

neutrino mixing and of CP violation in the quark and lepton sector, is one of the most

challenging fundamental problems in contemporary particle physics.

“Asked what single mystery, if he could choose, he would like to see solved in his lifetime,

Weinberg doesnt have to think for long: he wants to be able to explain the observed

pattern of quark and lepton masses.”

From Model Physicist, CERN Courier, 13 October 2017.

The renewed attempts to seek new better solutions of the flavour problem than those

already proposed were stimulated primarily by the remarkable progress made in the studies

of neutrino oscillations, which began 23 years ago with the discovery of oscillations of

atmospheric νµ and ν̄µ by SuperKamiokande experiment. This lead, in particular, to the

determination of the pattern of the 3-neutrino mixing, which turn out to consist of two

large and one small mixing angles.

In what follows we will discuss a new approach to the flavour problem within the three

family framework.
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The Lepton Flavour Problem
Consists of three basic elements (sub-problems), namely, understanding:

• Why mνj <<< me,µ,τ ,mq, q = u, c, t, d, s, b (mνj ∼< 0.5 eV, ml ≥ 0.511

MeV, mq ∼> 2 MeV);

• The origins of the patterns of

i) neutrino mixing of 2 large and 1 small angles (θl12 = 33.65◦, θl23 = 47.1◦, θl13 = 8.49◦),
and of ii) ∆m2

ij, i.e., of ∆m2
21 ≪ |∆m2

31|, ∆m2
21/|∆m2

31| ∼= 1/30.

• The origin of the hierarchical pattern of charged lepton masses:

me ≪ mµ ≪ mτ , me/mµ
∼= 1/200, mµ/mτ

∼= 1/17.
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The quark Flavour Problem
Consists of two basic elements (sub-problems), namely, understanding:

• The origin(s) of the observed patterns of up- and down-type quark masses character-

ized by strong hierachies.

md ≪ ms ≪ mb ,
md

ms
= 5.02× 10−2 ,

ms

mb

= 2.22× 10−2 , mb = 4.18 GeV;

mu ≪ mc ≪ mt ,
mu

mc
= 1.7× 10−3 ,

mc

mt
= 7.3× 10−3 , mt = 172.9 GeV;

• The origin of the pattern of the quark mixing: the three quark mixing angles are small

and hierarchical, sin θq13 ≪ sin θq23 ≪ sin θq12 ≪ 1, sin θq12
∼= 0.22.

Each of the considered sub-problems of the lepton and qaurk flavour problems is by itself

a formidable problem. As a consequence, solutions to each individual problem have been

proposed. However, a universal ”elegant and convincing” solution to the lepton and

quark flavour problems is still lacking.
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Considered Solutions

•mνj <<< me,µ,τ ,mq, q = u, c, t, d, s, b:
seesaw mechanism, Weinberg operator, radiative ν mass generation, extra dimensions.

However, additional input (symmetries) needed to explain the pattern of lepton mixing

and to get specific testable predictions.

• The origin of the hierarchical pattern of charged lepton and quark masses.

The best qualitative explanation is arguably provided by the Frogatt-Nielsen mechanism

based on U(1)FN flavour symmetry and its generalisations.

Problems: predictions suffer from uncertainties; most naturally accomodates small mix-

ing angles, while two lepton mixing angles are large.

• The origins of the patterns of neutrino mixing of 2 large and 1 small angles.

Arguably the most elegant and natural explanation is obtained within the non-Abelian

discrete flavour symmetry approach to the problem.

However, the symmetry breaking in the lepton and quark flavour models based on non-

Abelian discrete symmetries is impressively cumbersome: it requires the introduction of

a plethora of “flavon” scalar fields having elaborate potentials, which in turn require the

introduction of a number of “driving fields” and large shaping symmetries to ensure the

requisite breaking of the symmetry leading to correct mass and mixing patterns.

Combining the proposed individual “solutions” of the related sub-problems it is difficult,

if not impossible, to avoid the drawbacks of each of the ”ingredient” sub-problem “so-

lutions”. In some cases this can be achieved at the cost of severe fine-tuning.

S.T. Petcov, EPS-HEP Conference, Univ. of Hamburg and DESY, 26/07/2021



In neutrino physics of fundamental importance are also:

• the determination of the status of lepton charge conservation and the nature - Dirac

or Majorana - of massive neutrinos (which is one of the most challenging and pressing

problems in present day elementary particle physics) (GERDA, CUORE, KamLAND-Zen,

EXO, LEGEND, nEXO,...);

• determining the status of CP symmetry in the lepton sector (T2K, NOνA; T2HK,

DUNE);

• determination of the type of spectrum neutrino masses possess, or the “neutrino mass

ordering” (T2K + NOνA; JUNO; PINGU, ORCA; T2HKK, DUNE);

• determination of the absolute neutrino mass scale, or min(mj) (KATRIN, new ideas;

cosmology).

The program of research extends beyond 2035.
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These are the ”big questions” especially relevant to the reference 3-neutrino mixing

scheme, which I am going to employ for the discussion of the lepton flavour problem.

• BS3νRM: eV scale sterile ν’s; NSI’s; ChLFV processes (µ → e + γ, µ → 3e, µ− − e−

conversion on (A,Z)); ν−related BSM physics at the TeV scale (NjR, H
−−, H−, etc.).

Lepton sector: reference 3-ν mixing.
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Lepton sector: reference 3-ν mixing scheme

νlL =
3
∑

j=1
Ulj νjL l = e, µ, τ.

νj, mj 6= 0: Majorana particles (assumed).

Data: 3 νs are light: ν1,2,3, m1,2,3 ∼< 0.5 eV;
the value of min(mj) and the “ordering” unknown.

∆m2
21, |∆m2

31| - known.

The PMNS matrix U - 3 × 3 unitary: θ12, θ13, θ23 -
known; CPV phases δ, α21, α31 - unknown.

Thus, 5 known + 4 unknown parameters + MO.

“Known” = measured; “unknown” = not measured.
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Global analyses after Nu2020: combine,

in particular, the latest T2K and NOνA data.

Results on CPV due to δ and NO vs IO spectrum -
inconclusive.
K.J. Kelly, P.A. Machado, S.J. Parke, Y.F. Perez Gonzalez and R. Zukanovich-Funchal,

“Back to (Mass-)Square(d) One: The Neutrino Mass Ordering in Light of Recent Data,”

arXiv:2007.08526 [hep-ph].

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou,

“The fate of hints: updated global analysis of three-flavor neutrino oscillations,”

arXiv:2007.14792 [hep-ph].

Result on CPV, b.f.v.: δ = 197◦, NO; δ = 282◦, IO.

At 3σ: δ is found to lie in [120◦,369◦] ([193◦,352◦]), NO (IO).

IO: CPV due to δ at 3σ.

IO disfavored at 1.6σ with respect to NO (2.7σ including SuperK νatm data).
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Lepton and Quark Masses and Mixing

The observed patterns of the masses of up- and down-type quarks and of the charged

leptons of the three families of SM are characterized by strong hierarchies:

md ≪ ms ≪ mb ,
md

ms
= 5.02× 10−2 ,

ms

mb

= 2.22× 10−2 , mb = 4.18 GeV;

mu ≪ mc ≪ mt ,
mu

mc
= 1.7× 10−3 ,

mc

mt
= 7.3× 10−3 , mt = 172.9 GeV;

me ≪ mµ ≪ mτ ,
me

mµ
= 4.8× 10−3 ,

mµ

mτ
= 5.95× 10−2 , mτ = 1776.86 MeV.

The three quark mixing angles are small and hierarchical,

θq12 = 12.96◦ , θq23 = 2.42◦ , θq13 = 0.022◦,

while the lepton mixing is characterized by two large and one small angles,

θl12 = 33.65◦ , θl13 = 8.49◦ , θl23 = 47.1◦ (45◦ within 1.5σ) .

The quoted values correspond to the standard” parametrisations of VCKM and UPMNS. The

Dirac CPV phases in CKM and PMNS matrices read:

δq = (73.5− 5.1+ 4.2)◦ , δl = (1.37− 0.16+ 0.18)× 180◦ (?) .

F. Capozzi et al. (Bari Group), arXiv:1804.09678.
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The Flavour Problem: Modular Invariance Approach

In this approach the flavour (modular) symmetry is broken by the vacuum expectation

value (VEV) of a single scalar field - the modulus τ. The VEV of τ can also be the only

source of violation of the CP symmetry.

Many (if not all) of the drawbacks of the widely studied alternative approaches are absent

in the modular invariance approach to the flavour problem.

The present talk: bottom-up approach based on modular invariance.
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Modular invariance has been investigated in the context of field and superstring theories,

being a feature of a number of theoretical physics constructions (theories with extra

dimensions compactified on a torus (or tori), superstring theories on tori or orbifolds,

supergravity theories) [2]-[7]; it can be present in theories with global or local super-

symmetry and appears to be a property of the quantum Hall effect [8]-[13]. The modular

forms which are an integral part of the approach (see further) have been extensively

studied by mathematicians, in particular, in connection with number theory [14].

[2] R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Phys. Rept. 445, 1 (2007). [3] L.

E. Ibanez, Phys. Lett. B181, 269 (1986). [4] S. Hamidi and C. Vafa, Nucl. Phys. B279, 465

(1987). [5] S. Ferrara, D. Lust and S. Theisen, Phys. Lett. B233, 147 (1989). [6] D. Cremades,

L. E. Ibanez and F. Marchesano, JHEP 0405, 079 (2004). [7] S. Ferrara, D. Lust, A. D. Shapere

and S. Theisen, Phys. Lett. B225, 363 (1989). [8] C. A. Ltken and G. G. Ross, Phys. Rev.

D45, 11837 (1992). [9] A. Cappelli and G. R. Zemba, Nucl. Phys. B490, 595 (1997). [10] C.

P. Burgess and B. P. Dolan, Phys. Rev. B63, 155309 (2001). [11] M. Lippert, R. Meyer and

A. Taliotis, JHEP 1501, 023 (2015). [12] C.A. Lutken, EPJ Web Conf. 71, 0079 (2014) 00079

(doi:10.1051/epjconf/20147100079). [13] C. A. Lutken, Phys. Rev. B99, 195152 (2019). [14]

H. M. Farkas and I. Kra, Theta Constants, Riemann Surfaces and the Modular Group, Graduate

Studies in Mathematics, vol. 37, American Mathematical Society (2001).
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Top-Down Approach

– A. Baur, M. Kade, H.P. Nilles, S. Ramos-Snchez, P.K.S. Vaudrevange,“Completing the eclectic

flavor scheme of the Z2 orbifold,” arXiv:2104.03981 [hep-th].

– A.Baur, M. Kade, H.P. Nilles, S.Ramos-Sanchez and P.K.S. Vaudrevange, “Siegel modular

flavor group and CP from string theory,” Phys. Lett. B 816 (2021) 136176 [arXiv:2012.09586

[hep-th]].

– H.P. Nilles, S. Ramos-Sanchez, P.K.S. Vaudrevange, “Eclectic flavor scheme from ten-

dimensional string theory - II detailed technical analysis,” Nucl. Phys. B 966 (2021) 115367

[arXiv:2010.13798 [hep-th]].

– H.P. Nilles, S. Ramos-Sanchez and P.K.S. Vaudrevange, “Eclectic flavor scheme from ten-

dimensional string theory I. Basic results,” Phys. Lett. B 808 (2020) 135615 [arXiv:2006.03059

[hep-th]].

– H.P. Nilles, S. Ramos-Sanchez and P.K.S. Vaudrevange, “Eclectic flavor scheme from ten-

dimensional string theory I. Basic results,” Phys. Lett. B 808 (2020) 135615 [arXiv:2006.03059

[hep-th]].

– Y. Almumin, M.C. Chen, V. Knapp-Perez, S. Ramos-Sanchez, M. Ratz and S. Shukla, “Meta-

plectic Flavor Symmetries from Magnetized Tori,” arXiv:2102.11286 [hep-th].

– K. Ishiguro, T. Kobayashi, H. Otsuka, “Hierarchical structure of physical Yukawa couplings

from matter field Kähler metric”, arXiv:2103.10240.

– S. Kikuchi, T. Kobayashi, H. Uchida, “Modular flavor symmetries of three-generation modes

on magnetized toroidal orbifolds,” arXiv:2101.00826.
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The Modular Group and the Finite Modular Groups

The modular group Γ – group of linear fractional transformations γ acting

on the complex variable τ belonging to the upper-half complex plane:

γτ = aτ+b
cτ+d , γ =





a b
c d



 , a, b, c, d ∈ Z , ad− bc = 1 , Imτ > 0 .

Γ is generated by two transformations S and T satisfying

S2 = (ST )3 = I ,

I being the identity element, and acting on τ as

τ
S−→ −1

τ , τ
T−→ τ +1 .

S and T can be represented as

S =





0 1
−1 0



 , T =





1 1
0 1



 .

Complex variable τ - modulus (the VEV of complex scalar field τ(x)).

Γ – inhomogeneous modular group.
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The Fundamental Domain of Γ shown for Imτ ≤ 2 (the red dots correspond to solutions

of the lepton flavour problem, see further).

Figure from P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933.
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Γ is isomorphic to the projective special linear group PSL(2,Z) = SL(2,Z)/Z2, SL(2,Z) is the

special linear group of 2 × 2 matrices with integer elements and unit determinant, and

Z2 = {I,−I} is its centre.

SL(2,Z) = Γ(1) ≡ Γ contains a series of infinite normal subgroups Γ(N),

Γ(N) =

{(

a b
c d

)

∈ SL(2,Z) ,

(

a b
c d

)

=

(

1 0
0 1

)

(mod N)

}

, N = 1,2,3, . . . ,

called the principal congruence subgroups. For N = 1 and 2, we define the groups Γ(N) ≡
Γ(N)/{I,−I} with Γ(1) ≡ Γ. For N > 2, Γ(N) ≡ Γ(N) since Γ(N) does not contain the

subgroup {I,−I}.

The quotient groups ΓN ≡ Γ/Γ(N) are called (inhomogeneous) finite modular groups. Remark-

ably, for N ≤ 5, ΓN are isomorphic to non-Abelian discrete groups widely used in flavour

model building:

Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4 and Γ5 ≃ A5.

ΓN is presented by two generators S and T satisfying:

S2 = (ST )3 = TN = I .

The group theory of Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4 and Γ5 ≃ A5 is summarized, e.g., in P.P.

Novichkov et al., JHEP 07 (2019) 165, arXiv:1905.11970.
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One can consider also:

Γ ≃ SL(2,Z) – homogeneous modular group, Γ(N) and the quotient groups Γ′
N ≡ Γ/Γ(N)

(homogeneous finite modular groups). For N = 3,4,5, Γ′
N are isomorphic to the double

covers of the corresponding non-Abelian discrete groups:

Γ′
3 ≃ A′

4 ≡ T ′, Γ′
4 ≃ S′

4 and Γ′
5 ≃ A′

5.

Γ′
N is presented by two generators S and T satisfying:

S4 = (ST )3 = TN = I , S2 T = T S2 (S2 = R) .

The group theory of Γ′
3 ≃ A′

4, Γ
′
4 ≃ S′

4 and Γ′
5 ≃ A′

5 for flavour model building was developed

in X.-G. Liu, G.-J. Ding, arXiv:1907.01488 (A′
4);

P.P. Novichkov et al., arXiv:2006.03058 (S′
4); C.-Y. Yao et al., arXiv:2011.03501 (A′

5).

Relevant sub-groups of Γ′
N

Z
S
4 = {I, S, S2, S3} (R2 = I, Z

R
2 = {I, R})

Z
ST
3 = {I, ST, (ST )2}

Z
T
N = {I, T, (T )2, ..., TN−1}
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Group Number of elements Generators Irreducible representations

S4 24 S, T (U) 1, 1′, 2, 3, 3′

S′
4 48 S, T (R) 1, 1′, 2, 3, 3′, 1̂, 1̂′, 2̂, 3̂, 3̂′

A4 12 S, T 1, 1′, 1′′, 3

T ′ 24 S, T (R) 1, 1′, 1′′, 2, 2′, 2′′, 3

A5 60 S̃, T̃ 1, 3, 3′, 4, 5

A′
5 120 S̃, T̃ 1, 3, 3′, 4, 5, 2̂, 2̂′, 4̂, 6̂.

Number of elements, generators and irreducible representations of S4, S′
4, A4, A′

4 ≡ T ′, A5

and A′
5 discrete groups.
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Examples of symmetries: A4, S4, A5.
From M. Tanimoto et al., arXiv:1003.3552
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Residual Symmetries

The breakdown of modular symmetry is parameterised by the VEV of τ.

There is no value of τ’s VEV which preserves the full symmetry Γ(′) (Γ
(′)
N ).

At certain “symmetric points” τ = τsym, Γ(′) (Γ
(′)
N ) is only partially broken, with the

unbroken generators giving rise to residual symmetries.

The R generator is unbroken for any value of τ, thus a Z
R
2 symmetry is always preserved.

There are only 3 inequivalent symmetric points in D:

• τsym = i∞, invariant under T , preserving Z
T
N × Z

R
2 ;

• τsym = i, invariant under S, preserving Z
S
4 (recall that S2 = R);

• τsym = ω ≡ exp(2πi/3), “the left cusp”, invariant under ST , preserving

Z
ST
3 × Z

R
2 .

P.P. Novichkov et al., arXiv:1811.04933 and arXiv:2006.03058

These symmetric values of τ preserve the CP (ZCP2 ) symmetry of a CP- and modular-

invariant theory (e.g. a modular theory where the couplings satisfy a reality condition).

P.P. Novichkov et al., arXiv:1911.04933 and arXiv:2006.03058

The CP (ZCP
2 ) symmetry is preserved for Re τ = 0 or for τ lying on the border of the

fundamental domain D, but is broken at generic values of τ.
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The fundamental domain D of the modular group Γ and its three symmetric points

τsym = i∞, i, ω. At the solid and dotted lines (which include the three points) CP is

also preserved. The value of τ can always be restricted to D by a suitable modular

transformation.

Figure from P.P. Novichkov et al., arXiv:2006.03058
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Matter Fields and Modular Forms

The matter(super)fields (charged lepton, neutrino, quark) transform under Γ (Γ) as

”weighted” multiplets:

ψi = (cτ + d)−kψ ρij(γ)ψj , γ ∈ Γ (γ ∈ Γ) ,

kψ is the weight and ρ(γ) is a unitary representation of Γ (Γ); kψ can be positive integer,

or negative integer, or 0: k ∈ Z.

ρ(γ) is the identity matrix whenever γ ∈ Γ(N) (γ ∈ Γ(N)).

Thus, effectively, ρ(γ) is a unitary representation of the finite modular group ΓN (Γ′
N).

F. Feruglio, arXiv:1706.08749; S. Ferrara et al., Phys.Lett. B233 (1989) 147, B225 (1989) 363

As we have indicated in brackets, one can consider also the case of Γ and γ ∈ Γ(N). Then

ρ(γ) will be a unitary representation of the homogeneous finite modular group Γ′
N .
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Modular Forms

Within the considered framework the elements of the Yukawa coupling and fermion mass

matrices in the Lagrangian of the theory are expressed in terms of modular forms of a

certain level N and weight kf .

The modular forms are functions of a single complex scalar field – the modulus τ – and

have specific transformation properties under the action of the modular group.

Both the Yukawa couplings and the matter fields (supermultiplets) are assumed to trans-

form in representations of an inhomogeneous (homogeneous) finite modular group Γ
(′)
N .

Once τ acquires a VEV, the modular forms and thus the Yukawa couplings and the form

of the mass matrices get fixed, and a certain flavour structure arises.

Quantitatively and barring fine-tuning, the magnitude of the values of the non-zero ele-

ments of the fermion mass matrices and therefore the fermion mass ratios are determined

by the modular form values (which in turn are functions of the τ’s VEV).
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Modular Forms (contd.)

The key elements of the considered framework are modular forms f(τ) of weight kf and

level N – holomorphic functions of τ, which transform under Γ (Γ) as follows:

f (γτ) = (cτ + d)kf f(τ) , γ ∈ Γ (γ ∈ Γ) ,

In the case of Γ (Γ) non-trivial modular forms exist only for positive even integer (positive

integer) weight kf .

For given k, N (N is a natural number), the modular forms span a linear space of finite

dimension:

of weight k and level 3, Mk(Γ
(′)
3 ≃ A(′)

4 ), is k+1;

of weight k and level 4, Mk(Γ
(′)
4 ≃ S(′)

4 ), is 2k+1;

of weight k and level 5, Mk(Γ
(′)
5 ≃ A(′)

5 ), is 5k+1.

Thus, dimM1(Γ
′
3 ≃ A′

4) = 2, dimM1(Γ
′
4 ≃ S′

4) = 3, dimM1(Γ
′
5 ≃ A′

5) = 6.

One can find a basis F (τ) ≡ (f1(τ), f2(τ), . . . )T in each of these spaces such that for any

γ ∈ Γ (γ ∈ Γ), F (γτ) belongs to the same space and transforms according to a unitary

irreducible representation r of ΓN (Γ′
N):

F (γτ) = (cτ + d)kF ρr(γ)F(τ) , γ ∈ Γ (γ ∈ Γ) .

This result is at the basis of the modular invariance approach to the flavour problem

proposed in F. Feruglio, arXiv:1706.08749.

S.T. Petcov, EPS-HEP Conference, Univ. of Hamburg and DESY, 26/07/2021



The Framework

N = 1 rigid (global) SUSY, the matter action S reads:

S =
∫

d4xd2θ d2θ K(τ, τ , ψ, ψ) +
(∫

d4xd2θ W (τ, ψ) + h.c.
)

,

K is the Kähler potential, W is the superpotential, ψ denotes a set of chiral supermultiplets

ψi, θ and θ are Grassmann variables;

τ is the modulus chiral superfield, whose lowest component is the complex scalar field

acquiring a VEV (we use in what follows the same notation τ for the lowest complex

scalar component of the modulus superfield and call this component also “modulus”).

τ and ψi transform under the action of Γ (Γ) in a certain way (S. Ferrara et al., PL B225

(1989) 363 and B233 (1989) 147). Assuming that ψi = ψi(x) transform in a certain irrep

ri of ΓN (Γ′
N), the transformations read:

γ =





a b
c d



 ∈ Γ (Γ) :



















τ → aτ + b

cτ + d
,

ψi → (cτ + d)−ki ρri(γ)ψi .

ψi is not a modular form multiplet, the integer (−ki) can be > 0, < 0, 0.

Invariance of S under these transformations implies (global SUSY):

S.T. Petcov, EPS-HEP Conference, Univ. of Hamburg and DESY, 26/07/2021



W (τ, ψ) →W (τ, ψ) ,

The superpotential can be expanded in powers of ψi:

W (τ, ψ) =
∑

n

∑

{i1,...,in}

∑

s

gi1 ... in,s (Yi1 ... in,s(τ)ψi1 . . . ψin)1,s ,

1 stands for an invariant singlet of ΓN (Γ′
N). For each set of n fields {ψi1, . . . , ψin}, the

index s labels the independent singlets. Each of these is accompanied by a coupling

constant gi1 ... in,s and is obtained using a modular multiplet Yi1 ... in,s of the requisite weight.

To ensure invariance of W under ΓN (Γ′
N), Yi1 ... in,s(τ) must transform as:

Y (τ)
γ−→ (cτ + d)kY ρrY (γ)Y (τ) ,

rY is a representation of ΓN (Γ′
N), and kY and rY are such that

kY = ki1 + · · ·+ kin , (1)

rY ⊗ ri1 ⊗ . . .⊗ rin ⊃ 1 . (2)

Thus, Yi1 ... in,s(τ) represents a multiplet of weight kY and level N modular forms trans-

forming in the representation rY of ΓN (Γ′
N).
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Mass Matrices

Consider the bilinear (i.e., mass term)

ψci M(τ)ij ψj ,

where the superfields ψ and ψc transform as

ψ
γ−→ (cτ + d)−kρr(γ)ψ (ρ(γ) , Γ

(′)
N , N = 2,3,4,5) ,

ψc
γ−→ (cτ + d)−k

c

ρcrc(γ)ψ
c , (ρc(γ) , Γ

(′)
N ) .

Modular invariance: M(τ)ij must be modular form of level N and weight K ≡ k+ kc.

It is of crucial importance for model building to find the basis of modular forms of the

lowest weight 2 (weight 1) transforming in irreps of ΓN (Γ′
N).

Multiplets of ΓN (Γ′
N) of higher weight modular forms can be constructed from ten-

sor products of the lowest weight 2 (weigh 1) multiplets (they represent homogeneous

polynomials of the lowest weight modular forms).
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The modular forms of level N = 2,3,4 for Γ2,3,4 ≃ S3, A4, S4 have been constructed by use

of the Dedekind eta function, η(τ),

η(τ) = q1/24
∞
∏

n=1
(1− qn) , q = ei2πτ .

Modular forms of level N = 4 for Γ′
4 ≃ S′

4 – in terms of θ(τ) and ε(τ):

θ(τ) ≡ η5(2τ)

η2(τ)η2(4τ)
= Θ3(2τ) , ε(τ) ≡ 2 η2(4τ)

η(2τ)
= Θ2(2τ) .

Θ2(τ) and Θ3(τ) are the Jacobi theta constants, η(aτ), a = 1,2,4, is the Dedekind eta

function.
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For (Γ3 ≃ A4), the generating (basis) modular forms of weight 2 were shown to form a 3

of A4 (expressed in terms of the Dedekind eta function).

F. Feruglio, arXiv:1706.08749

For (Γ4 ≃ S4), the 5 basis modular forms of weight 2 were shown to form a 2 and a 3′ of
S4 (expressed in terms of the Dedekind eta function).

J. Penedo, STP, arXiv:1806.11040

For (Γ5 ≃ A5), the 11 basis modular forms of weight 2 were shown to form a 3, a 3′ and
a 5 of A5 (expressed in terms of the Jacobi theta functions).

P.P. Novichkov, J. Penedo, STP, A.V. Titov, arXiv:1812.02158

For (Γ2 ≃ S3), the 2 basis modular forms of weight 2 were shown to form a 2 of S3

(expressed in terms of the Dedekind eta function).

T. Kobayashi, K. Tanaka, T.H. Tatsuishi, arXiv:1803.10391

Multiplets of higher weight modular forms have been also constructed from tensor prod-

ucts of the lowest weight 2 multiplets:

i) for N = 4 (i.e., S4), multiplets of weight 4 (weight k ≤ 10) were derived in

arXiv:1806.11040 (arXiv:1811.04933);

ii) for N = 3 (i.e., A4) multiplets of weight k ≤ 6 were found in arXiv:1706.08749;

iii) for N = 5 (i.e., A5), multiplets of weight k ≤ 10 were derived in arXiv:1812.02158.
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For (Γ′
3 ≃ A′

4), the generating (basis) modular forms of weight 1 were shown to form a 2

of A′
4 (expressed in terms of the Dedekind eta function).

X.-G. Liu, G.-J. Ding, arXiv:1907.01488

For (Γ′
4 ≃ S′

4), the 3 basis modular forms of weight 1 were shown to form a 3̂ and of S′
4

(expressed in terms of two Jacobi constant functions).

P.P. Novichkov et al., arXiv:2006.03058

For (Γ′
5 ≃ A′

5), the 6 basis modular forms of weight 1 were shown to form a 6̂ of A′
5.

C.-Y. Yao et al., arXiv:2011.03501

In each of three cases of A′
4, S

′
4 and A′

5 the lowest weight 1 modular forms, and thus all

higher weight modular forms, icluding those (of even weight) associated with A4, S4 and

A5, constructed from tensor products of the lowest weight 1 multiplets, were shown to

be expressed in term of only two independent functions of τ .

These pairs of functions are different for the three different groups; but they all are

related (in a different way) to the Dedekind eta function and have similar q−expansions,

i.e., power series expansions in q = e2πiτ.
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Example: S′
4

P.P. Novichkov, J.T. Penedo. S.T.P., arXiv:2006.03058

Weight 1 modular forms furnishing a 3̂ of S′
4:

Y (1)

3̂
(τ) =

(√
2 ε θ

ε2

−θ2

)

Modular S4 lowest-weight 2 multiplets furnish a 2 and a 3′ irreducible representations of

S4 (S′
4) and are given by: :

Y (2)
2

(τ) =

(

1√
2

(

θ4 + ε4
)

−
√
6 ε2 θ2

)

=

(

Y1
Y2

)

, Y (2)
3′ (τ) =

(

1√
2

(

θ4 − ε4
)

−2 ε θ3

−2 ε3 θ

)

=

(

Y3
Y4
Y5

)

.

At weight k = 3, a non-trivial singlet and two triplets exclusive to S′
4 arise:

Y (3)

1̂′ (τ) =
√
3
(

ε θ5 − ε5 θ
)

,

Y (3)

3̂
(τ) =





ε5 θ+ ε θ5

1

2
√
2

(

5 ε2 θ4 − ε6
)

1

2
√
2

(

θ6 − 5 ε4 θ2
)



 , Y (3)

3̂′ (τ) =
1

2

(

−4
√
2 ε3 θ3

θ6 +3 ε4 θ2

−3 ε2 θ4 − ε6

)

.

At weight k = 4 one again recovers the S4 result: the modular forms furnish a 1, 2, 3

and 3′ irreducible representations of S4 (S′
4).

Y (4)
1

(τ) =
1

2
√
3

(

θ8 +14 ε4 θ4 + ε8
)

, Y (4)
2

(τ) =

(

1
4

(

θ8 − 10 ε4 θ4 + ε8
)

√
3
(

ε2 θ6 + ε6 θ2
)

)

,

Y (4)
3

(τ) =
3

2
√
2

(√
2
(

ε2 θ6 − ε6 θ2
)

ε3 θ5 − ε7 θ

−ε θ7 + ε5 θ3

)

, Y (4)
3′ (τ) =





1
4

(

θ8 − ε8
)

1

2
√
2

(

ε θ7 +7 ε5 θ3
)

1

2
√
2

(

7 ε3 θ5 + ε7 θ
)



 ,
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The functions θ(τ) and ε(τ) are given by:

θ(τ) ≡ η5(2τ)

η2(τ)η2(4τ)
= Θ3(2τ) , ε(τ) ≡ 2 η2(4τ)

η(2τ)
= Θ2(2τ) .

Θ2(τ) and Θ3(τ) are the Jacobi theta constants, η(aτ), a = 1,2,4, is the Dedekind eta

function.

The functions θ(τ) and ε(τ) admit the following q-expansions - power series expansions

in q4 ≡ exp(iπτ/2) (Im(τ) ≥
√
3/2, |q4| . 0.26) :

θ(τ) = 1+ 2

∞
∑

k=1

q(2k)
2

4 = 1+ 2 q44 +2 q164 + . . . ,

ε(τ) = 2

∞
∑

k=1

q(2k−1)2

4 = 2 q4 +2 q94 +2 q254 + . . . .

In the “large volume” limit Im τ → ∞, θ → 1, ε→ 0.
In this limit ε ∼ 2 q4 and ε can be used as an expansion parameter instead of q4.

Due to quadratic dependence in the exponents of q4, the q−expansion series converge

rapidly in the fundamental domain of the modular group, where Im(τ) ≥
√
3/2 and |q4| ≤

exp(−π
√
3/4) ≃ 0.26.

Similar conclusions are valid for the pair of functions in terms of which the lowest weight

1 modular forms, and thus all higher weight modular forms of A′
4 and A′

5 are expressed.
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Example: A′
5

C.-Y. Yao et al., arXiv:2011.03501

Weight 1 modular forms furnishing a 6̂ of A′
5:

Y (1)

6̂
(τ) =

(

2 ε55 + θ55,2 θ
5
5 − ε55,5 ε5 θ

4
5,5

√
2 ε25 θ

3
5,−5

√
2 ε35 θ

2
5,5 ε

4
5 θ5
)T

.

The functions θ5(τ) and ε5(τ) are related to the Dedekind eta function and have the

following q−expansions:

θ5(τ) = 1+
3

5
q55 +

2

25
q105 − 28

125
q155 + . . . ,

ε5(τ) = q5

(

1− 2

5
q55 +

12

25
q105 ++

37

125
q155 + . . .

)

, q5 ≡ exp(i2πτ/5) .

In the “large volume” limit Im τ → ∞, similar to the S′
4 two functions, θ5 → 1,

ε5 → 0.
In this limit ε5 ∼ q5 and ε5 can be used as an expansion parameter instead of q5.

The q5−expansion series converge rapidly in the fundamental domain of the modular

group, where Im(τ) ≥
√
3/2 and |q5| ≤ exp(−π

√
3/5) ≃ 0.34.
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Example: Lepton Flavour Models Based on S4
(Seesaw Models without Flavons)

P.P. Novichkov et al., arXiv:1811.04933

We assume that neutrino masses originate from the (supersymmetric) type I seesaw

mechanism.

We assume further:

• Higgs doublets Hu and Hd transform trivially under Γ4, ρu = ρd ∼ 1, and ku = kd = 0;

• lepton SU(2) doublets L1, L2, L3 furnish a 3-dim. irrep of S4, i.e., ρL ∼ 3 or 3
′, and

carry weight kL = 2;

• neutral lepton gauge singlets N c
1, N

c
2, N

c
3 transform as a triplet of Γ4, ρN ∼ 3 or 3′,

and carry weight kN = 0;

• charged lepton SU(2) singlets Ec
1, E

c
2, E

c
3 transform as singlets of Γ4, ρ1,2,3 ∼ 1

′ ,1 ,1′

and carry weights k1,2.3 = 0,2,2.
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We work in a basis in which the S4 generators S and T are represented by symmetric

matrices for all irreducible representations r. In this basis the triplet irreps of S and T to

be used in this section read:

S = ± 1

3











−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2











, T = ± 1

3











−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω











,

ω = ei2πτ/3. The plus (minus) corresponds to the irrep 3 (3′) of S4.

In the employed basis we have:

ST =









1 0 0

0 ω2 0
0 0 ω









.
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We assume that neutrino masses originate from the (supersymmetric) type I seesaw

mechanism. The superpotential in the lepton sector reads

W = α (EcLHdfE (Y ))
1
+ g (N cLHufN (Y ))

1
+Λ(N cN cfM (Y ))

1
,

a sum over all independent invariant singlets with the coefficients α = (α, α′, . . . ), g =

(g, g′, . . . ) and Λ = (Λ,Λ′, . . . ) is implied. fE,N,M(Y ) denote the modular form multiplets

required to ensure modular invariance.

We assume further:

• Higgs doublets Hu and Hd transform trivially under Γ4, ρu = ρd ∼ 1, and ku = kd = 0;

• lepton SU(2) doublets L1, L2, L3 furnish a 3-dim. irrep of S4, i.e., ρL ∼ 3 or 3
′, and

carry weight kL = 2;

• neutral lepton gauge singlets N c
1, N

c
2, N

c
3 transform as a triplet of Γ4, ρN ∼ 3 or 3′,

and carry weight kN = 0;

• charged lepton SU(2) singlets Ec
1, E

c
2, E

c
3 transform as singlets of Γ4, ρ1,2,3 ∼ 1

′ ,1 ,1′

and carry weights k1,2.3 = 0,2,2.

With these assumptions, we can rewrite the superpotential as

W =

3
∑

i=1

αi (E
c
i LfEi (Y ))

1
Hd + g (N cLfN (Y ))

1
Hu +Λ(N cN c fM (Y ))

1
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By specifying the weights of the matter fields one obtains the weights of the relevent

modular forms.

After modular symmetry breaking, the matrices of charged lepton and neutrino Yukawa

couplings, λ and Y, as well as the Majorana mass matrix M for heavy neutrinos, are

generated:

W = λij E
c
i LjHd + Yij N c

i LjHu +
1

2
Mij N

c
i N

c
j ,

a sum over i, j = 1,2,3 is assumed. After integrating out N c and after EWS breaking,

the charged lepton mass matrix Me and the light neutrino Majorana mass matrix Mν are

generated (we work in the L-R convention for the charged lepton mass term and the

R-L convention for the light and heavy neutrino Majorana mass terms):

Me = vd λ
† , vd ≡ H0

d ,

Mν = −v2u YTM−1Y , vu ≡ H0
u .
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The Majorana mass term for heavy neutrinos

Assume kΛ = 0, i.e., no non-trivial modular forms are present in Λ(N cN c fM (Y ))
1
, kN = 0,

and for both ρN ∼ 3 or ρN ∼ 3′

(N cN c)
1
= N c

1N
c
1 +N c

2N
c
3 +N c

3N
c
2 ,

leading to the following mass matrix for heavy neutrinos:

M = 2Λ

(

1 0 0
0 0 1
0 1 0

)

, for kΛ = 0 .

The spectrum of heavy neutrino masses is degenerate; the only free parameter is the

overall scale Λ, which can be rendered real. The Majorana mass term conserves a “non-

standard” lepton charge and two of the three heavy Majorana neutrinos with definite

mass form a Dirac pair.

C.N. Leung, STP, 1983
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The neutrino Yukawa couplings

The lowest non-trivial weight, kL = 2, leads to

g
(

N cLY (2)
2

)

1
Hu + g′

(

N cLY (2)
3′

)

1
Hu .

There are 4 possible assignments of ρN and ρL we consider. Two of them, namely

ρN = ρL ∼ 3 and ρN = ρL ∼ 3′ give the following form of Y:

Y = g

[(

0 Y1 Y2
Y1 Y2 0
Y2 0 Y1

)

+
g′

g

(

0 Y5 −Y4
−Y5 0 Y3
Y4 −Y3 0

)]

, for kL +KN = 2 and ρN = ρL .

The two remaining combinations, (ρN , ρL) ∼ (3,3′) and (3′,3), lead to:

Y = g

[(

0 −Y1 Y2
−Y1 Y2 0
Y2 0 −Y1

)

+
g′

g

(

2Y3 −Y5 −Y4
−Y5 2Y4 −Y3
−Y4 −Y3 2Y5

)]

, for kL + kN = 2 and ρN 6= ρL .

In both cases, up to an overall factor, the matrix Y depends on one complex parameter

g′/g and the VEV τ.

Y (2)
2

(τ) =

(

1√
2

(

θ4 + ε4
)

−
√
6 ε2 θ2

)

=

(

Y1
Y2

)

, Y (2)
3′ (τ) =

(

1√
2

(

θ4 − ε4
)

−2 ε θ3

−2 ε3 θ

)

=

(

Y3
Y4
Y5

)

.
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The charged lepton Yukawa couplings

In the minimal (in terms of weights) viable possibility for L1,2,3 furnishing a 3-dim. irrep

of S4, i.e., ρL ∼ 3 or 3
′, and carrying a weight kL = 2, and Ec

1,2,3 transforming as singlets of

Γ4, ρ1,2,3 ∼ 1′ ,1 ,1′ (up to permutations) and carrying weights k1,2.3 = 0,2,2, the relevant

part of W , We, can take 6 different forms which lead to the same matrix Ue diagonalising

MeM
†
e = v2d λ

†λ, and thus do not lead to new results for the PMNS matrix. We give just

one of these 6 forms corresponding to ρL = 3, ρ1 = 1′, ρ2 = 1, ρ3 = 1′:

α
(

Ec
1 LY

(2)
3′

)

1
Hd + β

(

Ec
2LY

(4)
3

)

1
Hd + γ

(

Ec
3 LY

(4)
3′

)

1
Hd .

This leads leads to

λ =

(

αY3 αY5 αY4
β (Y1Y4 − Y2Y5) β (Y1Y3 − Y2Y4) β (Y1Y5 − Y2Y3)
γ (Y1Y4 + Y2Y5) γ (Y1Y3 + Y2Y4) γ (Y1Y5 + Y2Y3)

)

,

In this “minimal” example the matrix λ depends on 3 free parameters, α, β and γ, which

can be rendered real by re-phasing of the charged lepton fields.

We recall that

Me = vd λ
† , vd ≡ H0

d ,

Mν = −v2u YTM−1Y , vu ≡ H0
u .
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Parameters of the model: α, β, γ, g2/Λ – real; g′ and VEV of τ – complex, i.e., 6 real

parameters + 2 phases for description of 12 observables (3 charged lepton masses, 3

neutrino masses, 3 mixing angles and 3 CPV phases). Excellent description of the data

is obtained also for real g′ (i.e., 6 real parameters + 1 phase, employing gCP).

The 3 real parameters vdα, β/α, γ/α – fixed by fitting me, mµ and mτ .

The remaining 3 real parameters and 2 (1) phases – v2ug
2/Λ, |g′/g|, |τ | and arg(g′/g), arg τ

(arg τ) – describe the 9 ν observables, 3 ν masses, 3 mixing angles and 3 CPV phases.

The model considered leads to testable predictions for min(mj) (
∑

i
mi), type of the ν

mass spectrum (NO or IO), the CPV Dirac and Majorana phases, |〈m〉|, θ23, as well as of

correlations between different observables.
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Numerical Analysis

Each model depends on a set of dimensionless parameters

pi = (τ, β/α, γ/α, g′/g, . . . , Λ′/Λ, . . .) ,

which determine dimensionless observables (mass ratios, mixing angles and phases), and

two overall mass scales: vd α for Me and v2u g
2/Λ for Mν. Phenomenologically viable models

are those that lead to values of observables which are in close agreement with the

experimental results summarized in the Table below. We assume also to be in a regime

in which the running of neutrino parameters is negligible.
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Observable Best fit value and 1σ range

me/mµ 0.0048± 0.0002
mµ/mτ 0.0565± 0.0045

NO IO

δm2/(10−5 eV2) 7.34+0.17
−0.14

|∆m2|/(10−3 eV2) 2.455+0.035
−0.032 2.441+0.033

−0.035

r ≡ δm2/|∆m2| 0.0299± 0.0008 0.0301± 0.0008

sin2 θ12 0.304+0.014
−0.013 0.303+0.014

−0.013

sin2 θ13 0.0214+0.0009
−0.0007 0.0218+0.0008

−0.0007

sin2 θ23 0.551+0.019
−0.070 0.557+0.017

−0.024

δ/π 1.32+0.23
−0.18 1.52+0.14

−0.15

Best fit values and 1σ ranges for neutrino oscillation parameters, obtained in the global

analysis of F. Capozzi et al., arXiv:1804.09678, and for charged-lepton mass ratios,

given at the scale 2 × 1016 GeV with the tanβ averaging described in F. Feruglio,

arXiv:1706.08749 obtained from G.G. Ross and M. Serna, arXiv:0704.1248. The pa-

rameters entering the definition of r are δm2 ≡ m2
2 −m2

1 and ∆m2 ≡ m2
3 − (m2

1 +m2
2)/2. The

best fit value and 1σ range of δ did not drive the numerical searches here reported.
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P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933
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Best fit value 2σ range 3σ range

Re τ ±0.1045 ±(0.09597− 0.1101) ±(0.09378− 0.1128)
Im τ 1.01 1.006− 1.018 1.004− 1.018
β/α 9.465 8.247− 11.14 7.693− 12.39
γ/α 0.002205 0.002032− 0.002382 0.001941− 0.002472

Re g′/g 0.233 −0.02383− 0.387 −0.02544− 0.4417
Im g′/g ±0.4924 ±(−0.592− 0.5587) ±(−0.6046− 0.5751)

vd α [MeV] 53.19
v2u g

2/Λ [eV] 0.00933

me/mµ 0.004802 0.004418− 0.005178 0.00422− 0.005383
mµ/mτ 0.0565 0.048− 0.06494 0.04317− 0.06961

r 0.02989 0.02836− 0.03148 0.02759− 0.03224
δm2 [10−5 eV2] 7.339 7.074− 7.596 6.935− 7.712

|∆m2| [10−3 eV2] 2.455 2.413− 2.494 2.392− 2.513
sin2 θ12 0.305 0.2795− 0.3313 0.2656− 0.3449
sin2 θ13 0.02125 0.01988− 0.02298 0.01912− 0.02383
sin2 θ23 0.551 0.4846− 0.5846 0.4838− 0.5999

Ordering NO
m1 [eV] 0.01746 0.01196− 0.02045 0.01185− 0.02143
m2 [eV] 0.01945 0.01477− 0.02216 0.01473− 0.02307
m3 [eV] 0.05288 0.05099− 0.05405 0.05075− 0.05452
∑

i
mi [eV] 0.0898 0.07774− 0.09661 0.07735− 0.09887

|〈m〉| [eV] 0.01699 0.01188− 0.01917 0.01177− 0.02002
δ/π ±1.314 ±(1.266− 1.95) ±(1.249− 1.961)
α21/π ±0.302 ±(0.2821− 0.3612) ±(0.2748− 0.3708)
α31/π ±0.8716 ±(0.8162− 1.617) ±(0.7973− 1.635)

Nσ 0.02005

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases A and

A∗, (which refer to (kΛ, kg) = (0,2) and τ = ±0.1045+ i1.01).
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Fermion Mass Hierarchies without Fine-Tuning

The l− and q− mass hierarchies in all modular flavour models proposed so far in the

literarture – obtained with fine-tuning.

Fine-tuning:

i) high sensitivity of observables to model parameters, and/or

ii) unjustified hierarchies between model’s parameters.

The flavour structure of the fermion mass matrices MF can be severely constrained by

the residual symmetries present at each of the 3 symmetry points,

τsym = i,

τsym = ω ≡ exp(i2π/3) = −1/2+ i
√
3/2, and

τsym = i∞:

residual symmetries may enforce the presence of multiple zeros in MF .

As τ moves away from τsym, the zero entries in MF will become non-zero. Their mag-

nitude will be controlled by the size of the departure ǫ from τsym and by the field

transformation properties under the residual symmetry group.

Thus, fine-tuning might be avoided in the vicinity of τsym as l− and q− mass hierarchies

would follow from the properties of the modular forms present in the corresponding MF

rather than being determined by the values of the accompanying constants also present

in MF .

The successful technical realisation of this idea:

P.P. Novichkov, J.T. Penedo, STP, arXiv:2102.07488.

S.T. Petcov, EPS-HEP Conference, Univ. of Hamburg and DESY, 26/07/2021



A′
5 Model with L ∼ 3, Ec ∼ 3

′, Nc ∼ 2̂
′

L ∼ (3, kL = 3), Ec ∼ (3′, kE = 1), N c ∼ (2̂′, kN = 2); vicinity of τ = i∞.

We consider first the most ‘structured’ series of hierarchical models, i.e. the case with

both fields L, Ec furnishing complete irreps of the finite modular group.

At level N = 5 the only such possibility arises in the vicinity of τ = i∞ when L and Ec are

different triplets of A′
5.

For neutrino masses generated via a type I seesaw, we have considered gauge-singlets

N c furnishing a complete irrep of dimension 2 or 3.

We performed a detailed search for a model which

i) is phenomenologically viable in the regime of interest,

ii) produces a charged-lepton spectrum which is not fine-tuned,

iii) involvs at most 8 effective parameters (including τ).

An observable O is typically considered fine-tuned with respect to some parameter p if

BG ≡ |∂ lnO/∂ ln p| & 10.
G. Giudice and R. Barbieri, 1987

Found one model satisfying these requirements:

L ∼ (3, kL = 3), Ec ∼ (3′, kE = 1), N c ∼ (2̂′, kN = 2).
The charged-lepton mass matrix has the following structure:

M †
e ∼





1 ǫ4 ǫ

ǫ3 ǫ2 ǫ4

ǫ2 ǫ ǫ3



 , ǫ ≃ q5 , q5 = exp(i2πτ/5) .

The predicted charged-lepton mass pattern is (mτ ,mµ,me) ∼ (1, ǫ, ǫ4).

S.T. Petcov, EPS-HEP Conference, Univ. of Hamburg and DESY, 26/07/2021



S′
4 Model with L ∼ 2̂⊕ 1̂, Ec ∼ 3̂

′, Nc ∼ 3

L ∼ (2̂⊕ 1̂, kL = 2), Ec ∼ (3̂′, kE = 2), N c ∼ (3, kN = 1); vicinity of τ = i∞.

In the second most ‘structured’ case, one of the fields L, Ec is an irreducible triplet, while

the other decomposes into a doublet and a singlet of the finite modular group.

This possibility is realised at level N = 4 in the vicinity of τ = i∞.

For definiteness, we take L = L12 ⊕ L3 with L12 ∼ (2̂, kL), L3 ∼ (1̂, kL), and Ec ∼ (3̂′, kE).

We have performed a systematic scan restricting ourselves to models involving at most

8 effective parameters (including τ) with no no limit on modular form weights.

Models predicting me = 0 are rejected.

N c (when present) furnish a complete irrep of dimension 2 or 3.

Out of the 60 models thus identified, we have selected the only one which

i) is viable in the regime of interest and

ii) produces a charged-lepton spectrum which is not fine-tuned.

This model turns out to be consistent with the experimental bound on the Dirac CPV

phase. It corresponds to kL = kE = 2 and N c ∼ (3,1).

Using as expansion parameter ǫ ≡ ε/θ ≃ 2q, q = exp(iπτ/2), M †
e is approximately given by:

M †
e ∼ vd





ǫ2 ǫ ǫ3

1 ǫ3 ǫ

ǫ2 ǫ ǫ3



 ; M †
e ≃

√
3

2
vdα1θ

8







ǫ2
(α̃2+

√
3)

2
√
6

ǫ
(7α̃2−

√
3)

2
√
6

ǫ3

− α̃2

6

(7
√
3α̃2+9)
6
√
6

ǫ3
(
√
3α̃2−9)
6
√
6

ǫ

α̃3ǫ2 − α̃3√
2
ǫ α̃3√

2
ǫ3







, α̃2(3) ≡ α2(3)/α1 .

The charged-lepton mass pattern is predicted to be (mτ ,mµ,me) ∼ (1, ǫ, ǫ3).
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One can also find approximate expressions for the charged-lepton mass ratios:

me

mµ
≃ 18

√
3

∣

∣α̃3(α̃2
2 − 3)

∣

∣

|α̃2|
(

(α̃2 +
√
3)2 +12α̃2

3

)|ǫ|2 ,

mµ

mτ
≃
√

3

2

√

(α̃2 +
√
3)2 +12α̃2

3

|α̃2|
|ǫ| .

These expressions isolate viable (ǫ-independent) regions in the plane of α̃−1
2 = α1/α2 and

α̃3/α̃2 = α3/α2.

These regions are shown in the next figure including contours quantifying the degree of

fine-tuning involved in the relation between l− mass ratios and constant parameters.

The model best-fit point corresponds to a small value of max(BG) ≃ 0.74.
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Model A′
5 S′

4 S′
4

Re τ −0.47+0.037
−0.096 0.0235+0.0019

−0.002 −0.496+0.009
−0.016

Im τ 3.11+0.26
−0.19 2.65+0.05

−0.04 0.877+0.0023
−0.024

α2/α1 1.33+0.20
−0.18 −7.43+2.76

−12.2 —

α3/α1 3.07+0.21
−0.15 2.76+5.27

−1.33 2.45+0.44
−0.42

α4/α1 — — −2.37+0.36
−0.3

α5/α1 — — 1.01+0.06
−0.06

g2/g1 −0.0781+0.0228
−0.0346 −0.407+0.0002

−0.0003 1.5+0.15
−0.14

g3/g1 0.57+0.0023
−0.0017 0.321+0.02

−0.043 2.22+0.17
−0.15

vd α1, GeV 0.404+0.303
−0.149 1.73+1.8

−1.15 4.61+1.32
−1.33

v2u g1/Λ, eV 0.778+1.13
−0.477 42.5+9.88

−5.2 0.268+0.057
−0.063

ǫ(τ) 0.0998+0.0267
−0.0274 0.0313+0.0021

−0.0022 0.0186+0.0028
−0.0023

CL mass pattern (1, ǫ, ǫ4) (1, ǫ, ǫ3) (1, ǫ, ǫ2)
max(BG) 5.579 0.738 0.848
me/mµ 0.00474+0.00062

−0.0005 0.00479+0.00058
−0.00056 0.00475+0.00061

−0.00052

mµ/mτ 0.0573+0.0111
−0.0137 0.0574+0.0117

−0.013 0.0556+0.0136
−0.0116

r 0.0297+0.0021
−0.0021 0.0298+0.0019

−0.0023 0.0298+0.00196
−0.0023

δm2, 10−5 eV2 7.33+0.39
−0.4 7.38+0.34

−0.44 7.38+0.35
−0.44

|∆m2|, 10−3 eV2 2.47+0.04
−0.04 2.48+0.05

−0.04 2.48+0.05
−0.04

sin2 θ12 0.306+0.036
−0.028 0.301+0.044

−0.034 0.304+0.039
−0.036

sin2 θ13 0.0222+0.0021
−0.0018 0.0223+0.0017

−0.0022 0.0221+0.0019
−0.002

sin2 θ23 0.55+0.044
−0.097 0.548+0.045

−0.107 0.539+0.0522
−0.099

m1, eV 0.0493+0.00041
−0.00046 0.0204+0.00042

−0.00035 0

m2, eV 0.05+0.00037
−0.00042 0.0221+0.0003

−0.00028 0.0086+0.0002
−0.00026

m3, eV 0 0.0542+0.00054
−0.00046 0.0502+0.00046

−0.00043

Σimi, eV 0.0993+0.0008
−0.0009 0.0967+0.0013

−0.001 0.0588+0.0002
−0.0002

|〈m〉|, eV 0.0197+0.002
−0.0031 0.0181+0.0004

−0.0003 0.00144+0.00035
−0.00033

δ/π 1.88+0.37
−0.13 1.44+0.01

−0.01 1±O(10−6)

α21/π 0.91+0.28
−0.09 1.77+0.01

−0.01 0

α31/π 0 1.86+0.02
−0.02 1±O(10−5)

Nσ 0.431 0.649 0.563
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Conclusions.

• Understanding the origin of quark and lepton flavours, i.e., of the patterns of quark,

charged lepton and neutrino masses, of quark and lepton (neutrino) mixing and of the

CP vilation in the quark and lepton sectors, is one of the most challenging fundamental

problems in particle physics.

• The modular invariance (finite modular group symmetries) is a new elegant and promis-

ing approach to the flavour problem. It has been successfully applied to the lepton flavour

problem. Encouraging attempts have been made to treat also the quark flavour problem

as well as both the quark and lepton flavour problems.

• In its minimal version the approach involves just one complex scalar field – the modulus

τ, and a certain rather small number of constant parameters. The modular symmetry is

broken by the the VEV of τ, which can also be the only source of CP symmetry breaking.

• The lepton and quark flavour models based of finite modular symmetries proposed in

the literature suffer from fine-tuning.

• In P.P. Novichkov, J.T. Penedo, S.T.P., arXiv:2102.07499 we have developed the

formalism allowing to construct non fine-tuned modular invariant flavour models.

• The models of lepton flavour based of finite modular symmetries, lead to testable

predictions for min(mj), type of the neutrino mass spectrum (NO or IO),
∑

i
mi, the

CPV Dirac and Majorana phases, |〈m〉|, θ23, as well as of correlations between different

observables.

• The modular invariance approach to the flavour problem is still at the stage of its

development at which there are still many aspects to be understood.
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