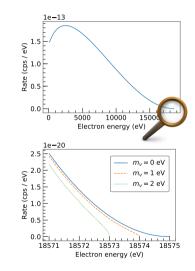


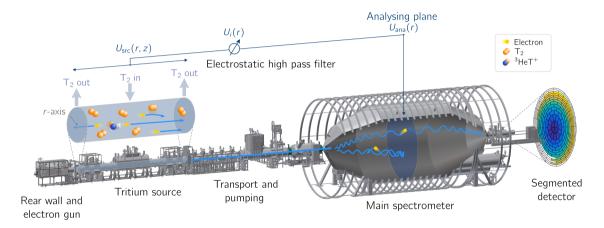
First Sub-eV Neutrino Mass Limit from the KATRIN Experiment EPS-HEP 2021

C. Karl for the KATRIN Collaboration


Technical University of Munich Max Planck Institute for Physics

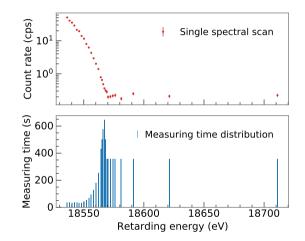
July 26, 2021

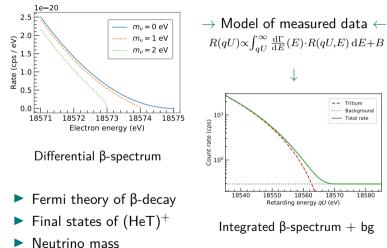
Direct neutrino mass measurement from β -decay

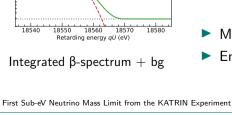

•
$$\beta$$
-decay: $X \to Y^+ + e^- + \bar{\nu}_e$

- ▶ Endpoint energy $E_0 = Q E_{\rm rec}$ split between e^- and $\bar{\nu}_e$
- Shape distortion of electron spectrum due to non-zero neutrino mass at highest energies
- Independent of cosmology and neutrino nature
- Experimental challenges:
 - Very small effect on the eV-scale
 - Low count rate in region of interest near the endpoint
- \blacktriangleright Current leading experiment: KATRIN $m_{\nu} = \sqrt{\sum_i |U_{ei}|^2 m_i^2} < 1.1 \, {\rm eV} \,\, ({\rm 90} \,\% \,\, {\rm CL})^1$
- ¹ M. Aker et al., Phys. Rev. Lett., Nov 2019

C. Karl for the KATRIN Collaboration

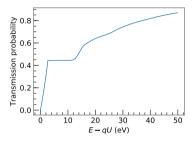

KATRIN experiment


C. Karl for the KATRIN Collaboration


Measurement principle

- Main spectrometer acts as high-pass filter that rejects low-energy electrons
- Set different retarding energies in the main spectrometer
- Count all electrons that pass the filter
- Integral measurement of the tritium β-spectrum
- ▶ Repeat the ≈ 2 h long spectral scan hundreds of times

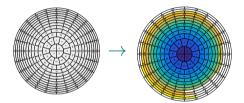
Model



-- Tritium

---- Background

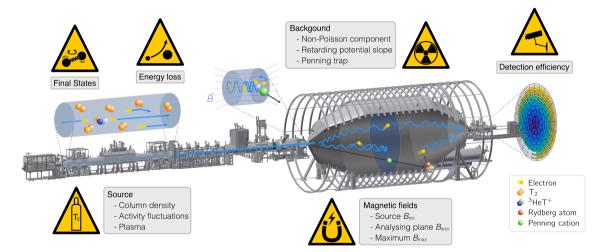
- Total rate



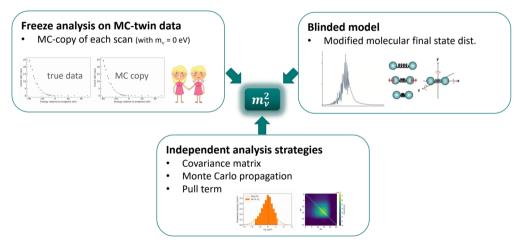
Experimental response

- MAC-E filter transmission
- Energy loss by scattering

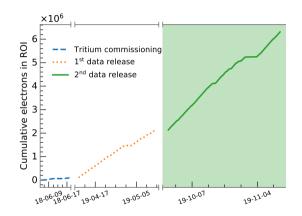
Data combination and likelihood


- Scan combination: counts and times added, retarding potentials averaged
- Pixel combination: grouped into rings to account for radial potential effects
- Free parameters
 - ▶ 1 Neutrino mass squared m_{ν}^2
 - 12 ringwise endpoints E_{0,ring}
 - 12 ringwise background rates B_{ring}
 - ▶ 12 ringwise signal amplitudes A_{ring}

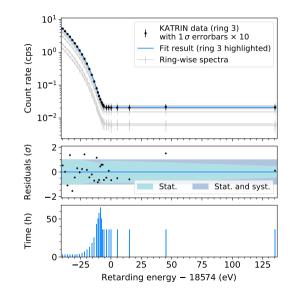
$$\begin{split} R_{\rm ring}(qU) &= A_{\rm ring} \cdot \int_{qU}^{E_{0,\rm ring}} \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(E; m_{\nu}^2, E_{0,\rm ring}) \cdot R(qU, E) \,\mathrm{d}E + B_{\rm ring} \\ \chi^2_{\rm ring} &= \left(R_{\rm data}(qU) - R_{\rm ring}(qU)\right) \cdot V^{-1} \cdot \left(R_{\rm data}(qU) - R_{\rm ring}(qU)\right)^T \quad \text{with the total covariance matrix } V \\ \chi^2_{\rm total} &= \sum_{\rm ring} \chi^2_{\rm ring} \end{split}$$


C. Karl for the KATRIN Collaboration

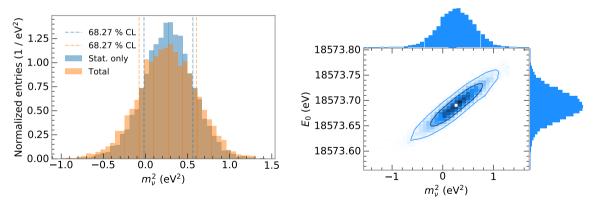
Systematics overview


C. Karl for the KATRIN Collaboration

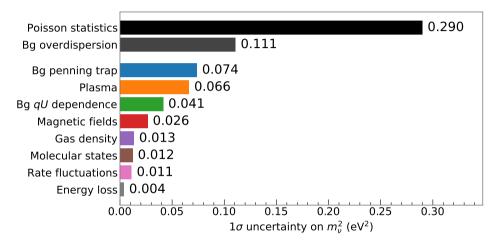
Analysis strategy Blinding


Our second neutrino mass campaign

- Runtime: 2019-09-27 to 2019-11-14
- Scan time: 31 days split in 361 scans
- Electrons in ROI: 4.3 million
- Background: 220 mcps
- ► Source activity: 84 % of nominal
- \blacktriangleright Sensitivity: $m_{
 u} <$ 0.7 eV (90 % CL)


Data fit

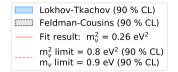
- Multi-ring fit with 3 ringwise parameters, 1 shared neutrino mass squared, 37 free parameters
- Reduced χ^2 : 0.9 at 299 degrees of freedom
- \Rightarrow *p*-value: 0.8
- Number of pixels in each ring vary due to alignment
- \Rightarrow Different count rates in each ring

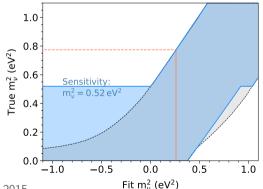

Neutrino mass squared distribution

Stat. only
$$m_{\nu}^2 = 0.27 \pm 0.29 \text{ eV}^2$$
 $E_0 = 18573.69 \pm 0.02 \text{ eV}$
Stat. + syst $m_{\nu}^2 = 0.26 \pm 0.34 \text{ eV}^2$ $E_0 = 18573.69 \pm 0.03 \text{ eV}$

C. Karl for the KATRIN Collaboration

Uncertainty breakdown

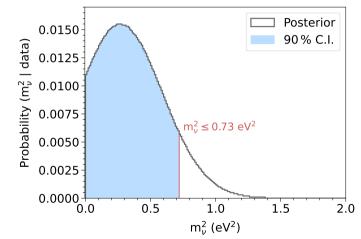



Design requirement for KATRIN final: $\sigma_{total} = 0.024 \text{ eV}^2$, $\sigma_{stat} = \sigma_{syst} = 0.017 \text{ eV}^2$,

C. Karl for the KATRIN Collaboration

Frequentist limit

- Insert best-fit into belt using method of Lokhov and Tkachov² (90 % CL)
- Coincides with method of Feldman and Cousins for upper limits with $m_{\nu, {\rm fit}}^2 \ge 0$
- Sensitivity: $m_{\nu} < 0.7 \, \mathrm{eV} \, (90 \,\% \, \mathrm{CL})$
- Limit: $m_{\nu} < 0.9 \, \text{eV} \, (90 \,\% \, \text{CL})$
- ⇒ First sub-electronvolt direct neutrino mass measurement and sensitivity


 $^2\,$ A. V. Lokhov and F. V. Tkachov, Phys. Part. Nucl., May 2015

C. Karl for the KATRIN Collaboration

Bayesian analysis

- ▶ Bayesian sampling with flat positive prior in m_{ν}^2
- Systematics treated with priors as well as an approach based on Monte Carlo sampling
- Limit by integrating the posterior distribution up to 90 %
- ▶ Result: $m_{\nu}^2 < 0.73 \, \text{eV}^2$

 $\Rightarrow m_{
u} < 0.85 \, \mathrm{eV}$

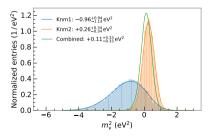


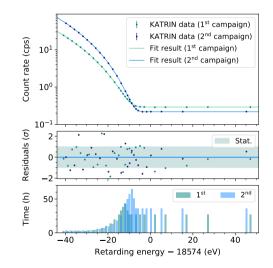
C. Karl for the KATRIN Collaboration

Comparison with first neutrino mass campaign

quantity	Knm1	Knm2	improved
best fit (eV 2)	-0.96	0.26	_
Poisson uncert. (eV^2)	0.97	0.29	factor 3.3
other uncert. (eV^2)	0.31	0.16	factor 1.9
total uncert. (eV^2)	1.04	0.34	factor 3.2
90 $\%$ CL sensitivity (eV)	1.1	0.7	factor 1.5
90% CL limit (eV)	1.1	0.9	factor 1.2

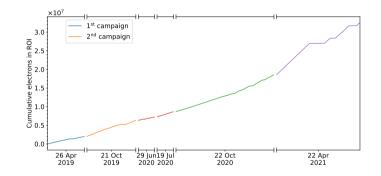
- Significantly more statistics collected
- Improvement of all "known" systematics
- New systematic effects identified, counter-measurements in progress

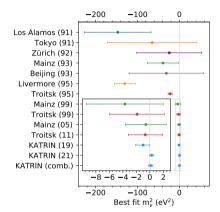



Comparison of sensitivity

Combination with first neutrino mass campaign

Different strategies pursued:


- 1. Combined fit with shared neutrino mass
- 2. Multiply distributions from MC propagation
- 3. Bayesian analysis: use posterior of first campaign as prior for second campaign
- Frequentist: $m_{
 u} < 0.8 \, {
 m eV}$ (90 % CL)
- Bayesian: $m_
 u <$ 0.7 eV (90 % CI)


Outlook: next neutrino mass campaigns

- Have data from three more campaigns
- Roughly 5 times more statistics
- Unblinding procedure planned for the end of this year
- Two more measurement phases planned this year

Wrapping up

- 2nd KATRIN neutrino mass campaign analysed
- Sensitivity: $m_{
 u} < 0.7 \, {
 m eV}$ (90 % CL)
- Best fit: $m_{
 u}^2 = 0.26 \pm 0.34 \, {
 m eV}^2$
- Limit: $m_{\nu} < 0.9 \, {\rm eV} \, (90 \, \% \, {\rm CL})$
- Limit combined with first campaign: $m_{\nu} < 0.8 \, {\rm eV} \, (90 \, \% \, {\rm CL})$
- Publication upcoming (arXiv:2105.08533)
- Still only about ¹/₅₀th of the final statistics to be collected in the coming years, stay tuned! :)

Thanks to everyone involved! Thank you for your attention!

C. Karl for the KATRIN Collaboration