CP-Violating Neutrino Non-Standard Interactions in Long-Baseline-Accelerator Data

Julia Gehrlein

Brookhaven National Laboratory

EPS 2021

27 July 2021

Based on 2008.01110, Phys. Rev. Lett. 126 (2021) no.5, 051801 in collaboration with Peter B. Denton and Rebekah Pestes

Julia Gehrlein (BNL)

CPV NSI at LBL

Neutrino oscillations: strong evidence for BSM physics

Neutrino oscillations

- ► flavor eigenstates (of weak interaction) and mass eigenstates (of free particle Hamiltonian) not aligned for neutrinos → related by mixing matrix
- standard parametrization for PMNS matrix as a series of three rotations

$$U_{PMNS} = U_{23}(\theta_{23})U_{13}(\theta_{13},\delta)U_{12}(\theta_{12})$$

\Rightarrow want to measure these new parameters!

CPV NSI at LBL

many experiments have measured the angles and mass splittings → impressive agreement between experiments

[nuFit v5.0]

Neutrino oscillations

• mass splittings: $|\Delta m_{32}^2| = 2.5 \cdot 10^{-3} \text{ eV}^2$, $\Delta m_{21}^2 = 7.4 \cdot 10^{-5} \text{ eV}^2$

mass ordering unknown

CP violation

- \blacktriangleright all three mixing angles are non-zero \rightarrow possibility for CPV
- currently least known parameter is δ which governs CPV in lepton sector
- want to measure δ!

[nuFit v5.0]

How to measure CPV?

- measure CPV in appearance experiments $P(\nu_{\alpha} \rightarrow \nu_{\beta})$
- compare neutrino with anti neutrino oscillation probability

use $P(\nu_{\mu} \rightarrow \nu_{e})$ as oscillation channel!

due to matter effects this channel is also sensitive to the MO

Long baseline experiments: NOvA

[see also S. Calvez's talk yesterday]

- neutrinos from NUMI beam at Fermilab
- E ~ 1.9 GeV, L=810 km
- matter density $\rho = 2.84$ g/cc
- Near (far) detector 0.3 (14) kT liquid scintillator

Long baseline experiments: T2K

[see also S. Dolan's talk yesterday]

- neutrinos from JPARC beam
- *E* ~ 0.6 GeV, L=295 km
- matter density $\rho = 2.3$ g/cc
- near detector: scintillator, far detector is SuperK

Excitement at Neutrino2020!

[Himmel '20]

[Himmel '20]

- both experiments prefer NO
- T2K prefers $\delta = 3\pi/2$
- ▶ no strong preference for NOvA, generally around $\delta \sim \pi$
- slight disagreement at $\sim 2\sigma$

Can new physics alleviate this slight discrepancy?

difference between NOvA and T2K is the baselines and the matter density

 \rightarrow neutrinos at NOvA experience stronger matter effects

new physics solution could be related to this difference

introduce new matter interactions for neutrinos

 \Rightarrow neutrino non-standard interactions

framework

$$\mathcal{L}_{NSI} = -2\sqrt{2}G_F\sum_{lpha,eta,f,P}\epsilon^{f,P}_{lphaeta}(\overline{
u}_{lpha}\gamma^{\mu}
u_{eta})(\overline{f}\gamma_{\mu}f)$$

affect oscillations via new matter effect

$$H = \frac{1}{2E} \left[U^{\dagger} M^2 U + a \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix} \right]$$

matter potential $a \propto G_F \rho E$

focus on vectorial NSI (for propagation), flavor changing parameters

6 real parameters:

$$|\epsilon_{e\mu}|\mathbf{e}^{\mathbf{i}\phi_{e\mu}},\;|\epsilon_{e\tau}|\mathbf{e}^{\mathbf{i}\phi_{e\tau}},\;|\epsilon_{\mu\tau}|\mathbf{e}^{\mathbf{i}\phi_{\mu\tau}}$$

consider only one complex parameter at a time

estimate for magnitude of NSI parameter

$$|\epsilon_{e\beta}| \approx \frac{s_{12}c_{12}c_{23}\pi\Delta m_{21}^2}{2s_{23}w_{\beta}} \left| \frac{\sin\delta_{\text{T2K}} - \sin\delta_{\text{NOvA}}}{a_{\text{NOvA}} - a_{\text{T2K}}} \right| \approx \begin{cases} 0.22 & \text{for } \beta = \mu \\ 0.24 & \text{for } \beta = \tau \end{cases},$$

with $w_{\beta} = \sin \theta_{23} (\cos \theta_{23})$

• if
$$\sin \delta_{\text{T2K}} = \sin \delta_{\text{NOvA}} \Rightarrow |\epsilon| = 0$$

► if sin $\delta_{\text{T2K}} \neq \sin \delta_{\text{NOvA}}$ & $a_{\text{T2K}} = a_{\text{NOvA}} \Rightarrow |\epsilon| \rightarrow \infty$

estimate for phase of NSI parameter

with $\delta_{NOvA} \neq \delta_{T2K}$ we find that $sin(\delta_{true} + \phi_{e\beta}) \approx 0$ with $a_{NOvA} > a_{T2K}$ and $sin \delta_{T2K} < sin \delta_{NOvA}$:

> $\cos(\delta_{
> m true} + \phi_{eeta}) pprox -1$ $\delta_{
> m true} pprox \delta_{
> m T2K} o \phi_{eeta} pprox rac{3}{2}\pi$

NSI: numerical results [Denton, JG, Pestes '20]

Appearance data:

$$\textit{n}(
u_{e}) = \textit{xP}(
u_{\mu}
ightarrow
u_{e}) + \textit{yP}(ar{
u}_{\mu}
ightarrow ar{
u}_{e}) + \textit{z} \, ,$$

include wrong sign leptons, fit to points on biprobability plot

Appearance data:

$$\textit{n}(
u_{e}) = \textit{xP}(
u_{\mu}
ightarrow
u_{e}) + \textit{yP}(ar{
u}_{\mu}
ightarrow ar{
u}_{e}) + \textit{z} \, ,$$

include wrong sign leptons, fit to points on biprobability plot

Disappearance data:

NOvA: use fit results from [Kelly et al '20] $|\Delta m_{32}^2| = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2,$ $4|U_{\mu3}|^2(1 - |U_{\mu3}|^2) = 0.99 \pm 0.02$

T2K: use provided likelihoods for θ_{23} , Δm_{32}^2

use information from vacuum experiments for remaining parameters

• KamLAND:
$$\theta_{12}$$
, $|\Delta m_{21}^2|$ [1303.4667]

SNO: $\Delta m_{21}^2 > 0$

conduct combined analysis of NOvA and T2K using a log likelihood ratio with Poisson statistics

 $J = \sin \theta_{13} \cos^2 \theta_{13} \sin \theta_{12} \cos \theta_{12} \sin \theta_{23} \cos \theta_{23} \sin \delta \quad \text{[Jarlskog '85]}$

combination is more compatible with IO, IO preferred over NO at $\Delta\chi^2 = 2.3$

[Kelly et al '20; Esteban et al '20; Denton, JG, Pestes '20]

discrepancy slightly resolved by swapping the mass ordering

- 1. NOvA and T2K both prefer NO over IO
- 2. NOvA+T2K prefers IO over NO
- 3. SK still prefers NO over IO
- 4. NOvA+T2K+SK still prefers NO over IO
- 5. near future reactor experiments provide information in the future

[Kelly et al '20; Esteban et al '20; Denton, JG, Pestes '20]

orange preferred over SM at integer values of $\Delta\chi^2,$ dark gray disfavored at $\Delta\chi^2=4.61$

[see also Chatterjee, Palazzo '20]

analytical estimates: $|\epsilon_{\alpha\beta}| \approx 0.2, \ \phi_{\alpha\beta} \approx 3\pi/2, \ \delta_{true} \approx 3\pi/2$

MO	NSI	$ \epsilon_{lphaeta} $	$\phi_{lphaeta}/\pi$	δ/π	$\Delta \chi^2$
	$\epsilon_{e\mu}$	0.19	1.50	1.46	4.44
NO	$\epsilon_{e\tau}$	0.28	1.60	1.46	3.65
	$\epsilon_{\mu\tau}$	0.35	0.60	1.83	0.90
	$\epsilon_{e\mu}$	0.04	1.50	1.52	0.23
IO	$\epsilon_{e\tau}$	0.15	1.46	1.59	0.69
	$\epsilon_{\mu\tau}$	0.17	0.14	1.51	1.03

$$\Delta\chi^2 = \chi^2_{\rm SM} - \chi^2_{\rm NSI}$$
 for a fixed MO, $\chi^2_{\rm NO} - \chi^2_{\rm IO} =$ 2.3

Constraints on NSI parameters

NSI effects grow with energy, distance and matter density

- $\epsilon_{\mu\tau}$ best probed with atmospheric neutrinos
- $\epsilon_{e\mu}$, $\epsilon_{e\tau}$ best probed with LBL appearance, atmospheric neutrinos

- IceCube: slightly disfavors LBL best fit points, prefers non-zero |ε_{eµ}| at 1σ
- SuperK: only considered real NSI, comparable sensitivity to IceCube

[IceCube '21]

COHERENT: applies to $M_{Z'}$ > 10 MeV, comparable constraints [Denton, JG '20]

Julia Gehrlein (BNL)

- open question of CPV in lepton sector
- slight tension between NOvA and T2K
- swap in mass ordering NO \rightarrow IO can resolve this partially
- tension fully resolved with NSI!
- predict maximal CP violation in PMNS matrix and for new physics
- hint for NSI can be further probed with near-future experiments like T2HK and DUNE

Thank you for your attention!

[Art work by symmetry magazine]

Julia Gehrlein (BNL)

CPV NSI at LBL

assumption: NSI only affects δ , $\theta_{23}\&\Delta m_{31}^2$ unaffected

$$\begin{split} & \textit{P}(\epsilon = \textit{0}, \delta_{\text{meas}}) = \textit{P}(\epsilon, \delta_{\text{true}}), \\ & \bar{\textit{P}}(\epsilon = \textit{0}, \delta_{\text{meas}}) = \bar{\textit{P}}(\epsilon, \delta_{\text{true}}), \end{split}$$

using approximate expressions for NSI in LBL from [Kikuchi '09]

 \rightarrow estimates for needed magnitude and phase of NSI parameter

in general no preference for IO with NSI parameters

orange preferred over SM at integer values of $\Delta\chi^2$, dark gray disfavored at $\Delta\chi^2 = 4.61$

$$\begin{split} & \textit{P}(\epsilon = \textit{0}, \delta_{\text{meas}}) = \textit{P}(\epsilon, \delta_{\text{true}}), \\ & \bar{\textit{P}}(\epsilon = \textit{0}, \delta_{\text{meas}}) = \bar{\textit{P}}(\epsilon, \delta_{\text{true}}), \end{split}$$

$$-s_{12}c_{12}c_{23}\frac{\pi}{2}\Delta m_{21}^{2}\sin\delta + a_{\mathrm{NOvA}}|\epsilon_{e\beta}| \left[w_{\beta}s_{23}\cos(\delta + \phi_{e\beta}) - v_{\beta}c_{23}\frac{\pi}{2}\sin(\delta + \phi_{e\beta}) \right] \approx -s_{12}c_{12}c_{23}\frac{\pi}{2}\Delta m_{21}^{2}\sin\delta_{\mathrm{NOvA}},$$
(A3)
$$s_{12}c_{12}c_{23}\frac{\pi}{2}\Delta m_{21}^{2}\sin\delta - a_{\mathrm{NOvA}}|\epsilon_{e\beta}| \left[w_{\beta}s_{23}\cos(\delta + \phi_{e\beta}) + v_{\beta}c_{23}\frac{\pi}{2}\sin(\delta + \phi_{e\beta}) \right] \approx s_{12}c_{12}c_{23}\frac{\pi}{2}\Delta m_{21}^{2}\sin\delta_{\mathrm{NOvA}},$$
(A4)

CPV NSI at LBL

CPV in mass matrices quantified via basis invariant

 $J_{CP} = \sin\theta_{13}\cos^2\theta_{13}\sin\theta_{12}\cos\theta_{12}\sin\theta_{23}\cos\theta_{23}\sin\delta$

 $J_{CP}^{max} = 1/(6\sqrt{3}) pprox 0.096$

[Jarlskog '85]

- quark mixing matrix: non-zero δ_{CKM} but CPV is small $|J_{CKM}|/J_{CP}^{max} = 3 \cdot 10^{-4}$
- ▶ Is CP violated in the lepton sector? By how much? $|J_{PMNS}|/J_{CP}^{max} < 0.34$