

Can ICAL be sensitive to Leptonic Flavor Dependent LRF of $L_{\mu} - L_{\tau}$ symmetry

Amina Khatun

Comenius University, Bratislava

Collaborator: Sanjib Kumar Agarwalla Institute of Physics Bhubaneswar

EPS-HEP conference 2021, July 27, 2021

Amina Khatun

Study of LRF at ICAL-INO

Additional U(1) gauge symmetry with ultralight gauge boson

- Minimal extension of SM: introduction of additional U'(1) symmetry, SM remains invariant and renormalizable. P. Langacker, arXiv:0801.1345
- Anomaly free U'(1) with gauge quantum number E. Ma PLB(1998)

$$Q = a_0(B - L) + a_1(L_e - L_\mu) + a_2(L_e - L_\tau) + a_3(L_\mu - L_\tau)$$

Additional U(1) gauge symmetry with ultralight gauge boson

- Minimal extension of SM: introduction of additional U'(1) symmetry, SM remains invariant and renormalizable. P. Langacker, arXiv:0801.1345
- Anomaly free U'(1) with gauge quantum number E. Ma PLB(1998)

$$Q = a_0(B - L) + a_1(L_e - L_{\mu}) + a_2(L_e - L_{\tau}) + a_3(L_{\mu} - L_{\tau})$$

- If the associated gauge boson Z' is ultralight, then the force has long range.
- For example, if $m_{Z'} \approx 1.32 \times 10^{-18}$ eV, range is $1/m_{\mu\tau} \approx 1$ AU $(1.5 \times 10^8 \, {\rm km})$

Additional U(1) gauge symmetry with ultralight gauge boson

- Minimal extension of SM: introduction of additional U'(1) symmetry, SM remains invariant and renormalizable. P. Langacker, arXiv:0801.1345
- Anomaly free U'(1) with gauge quantum number E. Ma PLB(1998)

$$Q = a_0(B - L) + a_1(L_e - L_{\mu}) + a_2(L_e - L_{\tau}) + a_3(L_{\mu} - L_{\tau})$$

- If the associated gauge boson Z' is ultralight, then the force has long range.
- For example, if $m_{Z'} \approx 1.32 \times 10^{-18}$ eV, range is $1/m_{\mu\tau} \approx 1$ AU $(1.5 \times 10^8 \, {\rm km})$
- For LRF with $L_e L_{\mu}$ and $L_e L_{\tau}$ symmetries, electrons in Sun contribute to new potential for neutrino, are studied using atmospheric neutrino experiment ICAL, AK et.al. JHEP 04 (2018) 023
- Here, $L_{\mu}-L_{ au}$ symmetry is studied, neutrons contribute to new potential

Extension with U(1)' having $L_{\mu} - L_{\tau}$ symmetry

Lagrangian of $SU(3) \times SU(2)_L \times U(1)_Y \times U(1)'$

K.S. Babu et.al Phys. Rev. D 57, 6788 (1998)

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{Z'} + \mathcal{L}_{mix}$

Interaction term of Z' is J. Heeck et.al. J.Phys.G 38 (2011) 085005

$$j^{\prime \mu} = \bar{\mu} \gamma^{\mu} \mu + \bar{\nu}_{\mu} \gamma^{\mu} P_L \nu_{\mu} - \bar{\tau} \gamma^{\mu} \tau - \bar{\nu}_{\tau} \gamma^{\mu} P_L \nu_{\tau} ,$$

- Since there are no μ and τ in matter, this term does not contribute to new potential for neutrino
- But in presence of \mathcal{L}_{mix} term

$$\begin{split} \mathcal{L}_{Z_2} &= - \Big(\mathsf{g}'\,(j')_{\mu} - (\xi - \mathsf{s}_W\,\chi) \frac{\mathsf{e}}{\mathsf{s}_W\,\mathsf{c}_W} \big((j_3)_{\mu} - \mathsf{s}_W^2\,(j_{\mathsf{EM}})_{\mu} \\ &- \mathsf{e}\,\mathsf{c}_W\,\chi(j_{\mathsf{EM}})_{\mu}\,\big) \Big) Z_2^{\mu}\,. \end{split}$$

Study of LRF at ICAL-INO

New potential due to LRF for terrestrial neutrinos

If
$$1/m_{Z'} > R_{\rm SE}$$
 or $m_{\mu\tau} \ll 1 \text{ AU}^{-1} = (1.5 \times 10^8 \text{ km})^{-1} \approx 1.32 \times 10^{-18} \text{ eV}$, new interactions via Z' due to e , p , n in Sun create potential for terrestrial neutrinos

For a neutral and unpolarized Sun, the potential due to electron and proton get cancelled. The potential is contributed by neutrons in the Sun, which is given by

$$V_{\mu\tau}^{\odot} = \pm g'(\xi - s_W \chi) \frac{e}{4 s_W c_W} \frac{N_n^{\odot}}{4 \pi R_{\rm SE}},$$

$$= \pm \frac{\alpha_{\mu\tau}}{4\pi} \frac{e}{4 s_W c_W} \frac{N_n^{\odot}}{R_{\rm SE}}; \quad \alpha_{\mu\tau} = g'(\xi - s_W \chi)$$

 N_n = total number of neutrons in Sun, R_{SE} is Earth-Sun distance

Amina Khatun

Study of LRF at ICAL-INO

amina.khatun@fmph.uniba.sk

We obtain $N_n = 1.5 \times 10^{56}$ using neutron number density profile in Sun as provided astro-ph/0511337

• Analysis of MINOS data in 2010, to explain different oscillation patterns of ν_{μ} and $\bar{\nu}_{\mu}$, best fit $\alpha_{\mu\tau} \approx 1.5 \times 10^{-50}$, however, later this mismatch was resolved. J. Heeck et.al. J.Phys.G 38 (2011) 085005

- Analysis of MINOS data in 2010, to explain different oscillation patterns of ν_{μ} and $\bar{\nu}_{\mu}$, best fit $\alpha_{\mu\tau} \approx 1.5 \times 10^{-50}$, however, later this mismatch was resolved. J. Heeck et.al. J.Phys.G 38 (2011) 085005
- The cosmological bound for this new force is ${g'}^2/4\pi \lesssim 10^{-11}$ from BBN measurement considering the Z' enters the equilibrium after the weak interactions freezes out J. Heeck et.al. J.Phys.G 38 (2011) 085005

- Analysis of MINOS data in 2010, to explain different oscillation patterns of ν_{μ} and $\bar{\nu}_{\mu}$, best fit $\alpha_{\mu\tau} \approx 1.5 \times 10^{-50}$, however, later this mismatch was resolved. J. Heeck et.al. J.Phys.G 38 (2011) 085005
- The cosmological bound for this new force is ${g'}^2/4\pi \lesssim 10^{-11}$ from BBN measurement considering the Z' enters the equilibrium after the weak interactions freezes out J. Heeck et.al. J.Phys.G 38 (2011) 085005
- Gravity experiments should observe the effect of this new force since it violates the equivalence principle

- Analysis of MINOS data in 2010, to explain different oscillation patterns of ν_{μ} and $\bar{\nu}_{\mu}$, best fit $\alpha_{\mu\tau} \approx 1.5 \times 10^{-50}$, however, later this mismatch was resolved. J. Heeck et.al. J.Phys.G 38 (2011) 085005
- The cosmological bound for this new force is ${g'}^2/4\pi \lesssim 10^{-11}$ from BBN measurement considering the Z' enters the equilibrium after the weak interactions freezes out J. Heeck et.al. J.Phys.G 38 (2011) 085005
- Gravity experiments should observe the effect of this new force since it violates the equivalence principle
- 95% C.L. limit on the neutron dependent fifth force with range \sim Earth-Sun distance can be used to get the constraint on angle of Z - Z' mixing: $\xi - s_W \chi < 5 \times 10^{-24}$

J. Heeck et.al. J.Phys.G 38 (2011) 085005, Phys.Rev.Lett.100:041101,2008

Effective hamiltonian of neutrino in presence of LRF with ${\it L}_{\mu}-{\it L}_{\tau}$ symmetry is

$$H_{f} = \left(U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^{2}}{2\mathcal{E}} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^{2}}{2\mathcal{E}} \end{bmatrix} U^{\dagger} + \begin{bmatrix} V_{CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & V_{\mu\tau} & 0 \\ 0 & 0 & -V_{\mu\tau} \end{bmatrix} \right)$$

U is PMNS matrix, V_{CC} is the matter induced potential due to W-mediated interactions of ν_e with electrons in matter

$\sin^2 \theta_{23}$	$\Delta m^2_{31} \; [\mathrm{eV}^2]$	$\sin^2 2\theta_{12}$	$\Delta m^2_{21} \; [\mathrm{eV^2}]$	$\sin^2 2\theta_{13}$	δ_{CP}
0.5, 0.4, 0.6	$2.5 imes10^{-3}$	0.855	7.39×10^{-5}	0.0876	0

• With E = 5 GeV, $\Delta m_{31}^2/2E \approx 2.5 \times 10^{-13}$ eV, which is approximately same as $V_{\mu\tau}$ with $\alpha_{\mu\tau} = 10^{-49}$

Oscillograms of $P(\nu_{\mu} \rightarrow \nu_{\mu})$ with $\sin^2 \theta_{23} = 0.5$

- The survival probabilities of u_{μ} increases with nonzero value of $\alpha_{\mu\tau}$
- Same change is seen for $\bar{\nu}_{\mu}$ with maximal mixing
- For nonmaximal $\theta_{23},$ the survival probabilities changes in opposite way for ν_{μ} and $\bar{\nu}_{\mu}$

Study of LRF at ICAL-INO

Difference of survival probabilities

 \checkmark opposite behaviour of neutrino and antineutrino survival probabilities dilute the sensitivity towards $\alpha_{\mu\tau}$ if charge of muons can not be distinguished

Amina Khatun

Study of LRF at ICAL-INO

amina.khatun@fmph.uniba.sk

Running of θ_{23}^m with different vacuum θ_{23}

Used the analytical expression for this running from S.K. Agarwalla et.al. arXiv:2103:13431

$$\begin{split} P_{\mu\mu} &= 1 - \sin^2 2\theta_{23}^m \left[\cos^2 \theta_{13}^m \sin^2 \frac{\Delta m_{31,m}^2 L}{4E} \right. \\ &+ \left. \frac{1}{4} \tan^2 \theta_{23}^m \sin^2 2\theta_{13}^m \sin^2 \frac{\Delta m_{32,m}^2 L}{4E} \right. \\ &+ \left. \sin^2 \theta_{13}^m \sin^2 \frac{\Delta m_{21,m}^2 L}{4E} \right]. \end{split}$$

• For
$$\theta_{23} = 45^{\circ}$$
, $\sin^2 2\theta_{23}^m \downarrow$, $P_{\mu\mu} \uparrow$ for $\nu \& \bar{\nu}$.

- For $\theta_{23} < 45^{\circ}$, $\sin^2 2\theta_{23}^m \uparrow$, $P_{\mu\mu} \downarrow$, for ν until $\theta_{23}^m \rightarrow 45^{\circ}$, but for $\bar{\nu}$, $P_{\mu\mu} \uparrow$
- For $\theta_{23} > 45^{\circ}$, $\sin^2 2\theta_{23}^m \uparrow$, $P_{\mu\mu} \downarrow$, for $\bar{\nu}$ until $\theta_{23}^m \rightarrow 45^{\circ}$, but $P_{\mu\mu} \uparrow$ for ν

Amina Khatun

Main goal is to solve neutrino mass hierarchy and precisely measure the atmospheric neutrino parameters.

- 50 kiloton magnetized (1.5 T) iron, and around 30000 Resistive Plate Chambers.
- Charge identification efficiency to distinguish μ^- and $\mu^+ \sim 98\%$.
- + Very good energy (\sim 10%) and angular resolution ($<2^\circ)$ for multi-GeV

MUONS . A. Chatterjee et al. JINST 9 (2014) P07001

Amina Khatun

Details of data simulation at ICAL

 \checkmark The statistical fluctuation is reduced by generating the events for very high exposure (1000 years), and then scale down to a 10 year exposure.

amina.khatun@fmph.uniba.sk

Study of LRF at ICAL-INO

Amina Khatun

Events with $\sin^2 \theta_{23} = 0.4$

Details of Statistical Analysis

$$\chi_{-}^{2} = \min_{\xi_{l}} \sum_{i=1}^{N_{E_{had}^{\prime}}} \sum_{j=1}^{N_{E_{\mu}}} \sum_{k=1}^{N_{\cos\theta_{\mu}}} \left[2(N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}}) - 2N_{ijk}^{\text{data}} \ln\left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}}\right) \right] + \sum_{l=1}^{N} \xi_{l}^{2},$$

$$\chi^2_{ICAL} = \chi^2_- + \chi^2_+$$

\checkmark The uncertainties are included by pull method

- flux normalization (20%)
- flux shape (5%) in energy
- θ_z dependence of flux (5%)
- crosssection (10%)
- overall systematics (5%)

Observable	Range	Bin width	Total Bins	
F (GeV)	[1, 11]	1	12	
	[11, 21]	5		
	[-1.0, 0.0]	0.1	15	
$\cos \theta_{\mu}$	[0.0, 1.0]	0.2		
	[0, 2]	1		
$E'_{\rm had}$ (GeV)	[2, 4]	2	4	
	[4, 25]	21		

Constraint with different true θ_{23} , marginalized

$$\Delta \chi^2_{\rm ICAL-LRF} = \chi^2(\alpha_{\mu\tau}({\rm fit})) - \chi^2(\alpha_{\mu\tau} = 0)$$

(b) Marginalized over Δm^2_{32} , θ_{23} and MO

Amina Khatun

Study of LRF at ICAL-INO

Constraint with different true θ_{23} , marginalized

 \checkmark Marginalized over Δm_{32}^2 , θ_{23} and MO

 \checkmark For θ_{23} in lower octant, the marginalization effect is small, particularly at small $\alpha_{\mu\tau}$. This is due to nature of running of θ_{23}^m for neutrino for $\theta_{23} < 45^\circ$, which can not be mimicked by other θ_{23} and Δm_{32}^2 since $\chi^2_- > \chi^2 + -$

Amina Khatun

Study of LRF at ICAL-INO

Effect on MH Measurement due to $\alpha_{\mu\tau}$ in fit

$$\Delta \chi^2_{\rm MH}(\rm SM) = \chi^2(\rm false\,MO, \alpha_{\mu\tau} = 0) - \chi^2(\rm true\,MO, \,\alpha_{\mu\tau} = 0)$$

Effect on MH Measurement due to $\alpha_{\mu\tau}$ in fit

$$\Delta \chi^2_{\rm MH}(\rm SM) = \chi^2(\rm false\,MO, \, \alpha_{\mu\tau} = 0) - \chi^2(\rm true\,MO, \, \alpha_{\mu\tau} = 0)$$

 $\Delta \chi^2_{\rm MH}({\rm LRF}) = \chi^2({\rm false\,MO}, \, \alpha_{\mu\tau} \, {\rm marginalized}) - \chi^2({\rm true\,MO}, \alpha_{\mu\tau} = 0)$

 $\sqrt{\alpha_{\mu\tau}}$ varied in theory in the range of $[0 - 10^{-50}]$.

Effect on MH Measurement due to $\alpha_{\mu\tau}$ in fit

$$\Delta \chi^2_{\rm MH}(\rm SM) = \chi^2(\rm false\,MO, \alpha_{\mu\tau} = 0) - \chi^2(\rm true\,MO, \, \alpha_{\mu\tau} = 0)$$

 $\Delta \chi^2_{\rm MH}({\rm LRF}) = \chi^2({\rm false\,MO}, \, \alpha_{\mu\tau} \, {\rm marginalized}) - \chi^2({\rm true\,MO}, \alpha_{\mu\tau} = 0)$

 $\checkmark \alpha_{\mu\tau}$ varied in theory in the range of $[0 - 10^{-50}]$.

$\Delta\chi^2_{ m MH}$ (SM)	$\Delta\chi^2_{ m MH}$ (LRF)	
7.56	7.56	

- We do not see the change sensitivity of the ICAL for the MO measurement
- This may be due to the negligible impact of $\alpha_{\mu\tau}$ in matter effect part of ν_{μ} oscillation

***For the dedicated study of MO measurement at ICAL, please see $\$ JHEP 10 (2014) 189 which shows ICAL will be able to determine MO with 3 σ C.L. in 10 years with optimized binning scheme. Amina Khatun Study of LRF at ICAL-INO amina.khatun@fmph.uniba.sk 18 / 23 Data: SM ($\alpha = 0$)

Summary

- Phenomenology of additional abelian U(1)' gauge group with ultralight mediator in the context of neutrino oscillation experiments is interesting
- In presence of Z Z' mixing, and $L_{\mu} L_{\tau}$ symmetry associated with U(1)' gauge group, neutrons in Sun produce new potential for terrestrial neutrinos if $m_{Z'} \leq 1.32 \times 10^{-18}$
- Survival probabilities of ν_{μ} and $\bar{\nu}_{\mu}$ modifies in similar way with maximal θ_{23} . However, with nonmaximal θ_{23} , survival probabilities of ν_{μ} and $\bar{\nu}_{\mu}$ change in opposite way at smaller energy or smaller $\alpha_{\mu\tau}$
- The constraint on $\alpha_{\mu\tau}$ depends on true value of θ_{23} .
- Using 10 years running of ICAL, the expected constraint is around $\alpha_{\mu\tau} \leq 2.4 \times 10^{-51}$ at 90% C.L. with sin² $\theta_{23} = 0.5$.
- The precision measurement and mass ordering measurement at ICAL remains unaffected with $\alpha_{\mu\tau}$ marginalized in fit.

Thank you for attention!

Amina Khatun

Study of LRF at ICAL-INO

More

Running of Oscillation parameters with $\alpha_{\mu\tau}$

Used the analytical expression for this running from S.K. Agarwalla et.al. arXiv:2103:13431

Observations

- The major modifications occur in θ^m_{23} running that causes the vacuum dominated oscillation
- The change in θ_{13} and θ_{12} is less, thus matter dominated term remains almost unchanged.

Amina Khatun

Study of LRF at ICAL-INO

Muon response of ICAL detector

Chatterjee et al. JINST9 (2014) P07001

Amina Khatun

Study of LRF at ICAL-INO

Hadron energy response at ICAL

Study of LRF at ICAL-INO

amina.khatun@fmph.uniba.sk