The future of high-energy astrophysical neutrino flavor measurements

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

UNIVERSITY OF COPENHAGEN

VILLUM FONDEN

EPS-HEP July 29, 2021

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Oscillation physics:

We will know the mixing parameters better (JUNO, DUNE, Hyper-K, IceCube Upgrade)

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Oscillation physics:

We will know the mixing parameters better (JUNO, DUNE, Hyper-K, IceCube Upgrade)

Test of the oscillation framework: We will be able to do what we want even if oscillations are non-unitary

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth (
$$\alpha = e, \mu, \tau$$
):

$$f_{\alpha, \oplus} = \sum_{\beta = e, \mu, \tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta, S}$$
Standard oscillations
or
new physics

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

Full π decay chain (1/3:2/3:0)_s

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

How does IceCube see TeV–PeV neutrinos?

Deep inelastic neutrino-nucleon scattering

Neutral current (NC)Charged current (CC)

$$v_x + N \rightarrow v_x + X$$

 $v_l + N \rightarrow l + X$

How does IceCube see TeV–PeV neutrinos?

Deep inelastic neutrino-nucleon scattering

Neutral current (NC)Charged current (CC)

At TeV–PeV, the average inelasticity $\langle y \rangle = 0.25-0.30$

How does IceCube see TeV–PeV neutrinos?

Deep inelastic neutrino-nucleon scattering

Neutral current (NC) Charged current (CC)

At TeV–PeV, the average inelasticity $\langle y \rangle = 0.25-0.30$

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

Theoretically palatable flavor regions $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Оr

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian Ingredient #2:

Theoretically palatable flavor regions

= MB, Beacom, Winter, PRL 2015 Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)
Flavor at the Earth: *theoretically palatable regions*

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

0r

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, PRL 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

0.65

0.55

 $\sin^2 \theta_{23}$

0.60

2020: Use χ^2 profiles from 2.0 the NuFit 5.0 global fit 1.8 (solar + atmospheric 1.6 1.4 + reactor + accelerator) 1.2 Esteban *et al.*, *JHEP* 2020 $\delta_{\rm CP}/\pi$ www.nu-fit.org 1.0 0.8 0.6 0.4 0.2 NuFit 5.0 0.400.45 0.50

Flavor at the Earth: *theoretically palatable regions*

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, PRL 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Note:

Note:

Note:

Note:

Note:

Note:

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ) Will be overcome by 2040

We can compute the oscillation probability more precisely:

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\alpha} f_{\beta,\mathrm{S}}$$

So we can convert back and forth between source and Earth more precisely

For a future experiment ε = JUNO, DUNE, Hyper-K:

We combine experiments in a likelihood:

$$-2\log \mathcal{L}(\boldsymbol{\theta}) = \sum_{\varepsilon} \chi_{\varepsilon}^2(\boldsymbol{\vartheta})$$

2020

Allowed regions: overlapping Measurement: imprecise

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

Song, Li, Argüelles, MB, Vincent, JCAP 2021

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

Nice

2020

NO, upper θ_{23} octant, -1.0JUNO + HK • π decay: $(1:2:0)_{S}$ 0.1 68% C.R. □ *u*-damped: (0 : 1 : 0)_c 0.9 95% C.R. 0.2 \land *n* decay: $(1:0:0)_{c}$ 99.7% C.R. 0.8 0.3 Fraction of U.S. F. Fraction of VH1 \$ H1.® 0.40.8 0.2 0.9 -0.11.0 0.0 0.2 0.3 0.5 0.6 0.70.8 0.9 1.0 0.0 0.1 04

2030

0.0

Fraction of v_e , $f_{e,\oplus}$

Allowed regions: overlapping Measurement: imprecise

Not ideal

Allowed regions: well separated Measurement: improving

Nice

2040

Allowed regions: well separated Measurement: precise

NO, upper θ_{23} octant,

2020

-1.0JUNO + HK • π decay: $(1:2:0)_{S}$ 0.1 68% C.R. □ *u*-damped: (0 : 1 : 0)_c 0.9 95% C.R. 0.2 \land *n* decay: $(1:0:0)_{c}$ 99.7% C.R. 0.8 0.3 Fraction of U.S. F. Fraction of VH1 \$ H1.® 0.40.8 0.2 0.9 -0.11.0 0.0 0.2 0.3 0.5 0.6 0.70.8 0.9 1.0 0.0 0.1 04Fraction of v_e , $f_{e,\oplus}$

2030

0.0

Allowed regions: overlapping Measurement: imprecise

Not ideal

Allowed regions: well separated Measurement: improving

Nice

2040

Allowed regions: well separated Measurement: precise

Success

No unitarity? No problem

No unitarity? No problem

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

Ingredient #1: Flavor ratios measured at Earth,

Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2021 **MB** & Ahlers, *PRL* 2019

Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2021 **MB** & Ahlers, *PRL* 2019

Ingredient #1: Flavor ratios measured at Earth, $(f_{e,\oplus}, f_{\mu,\oplus}, f_{\tau,\oplus})$ Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Posterior probability of $f_{\alpha,S}$ [MB & Ahlers, *PRL* 2019]:

$$\mathcal{P}(\boldsymbol{f}_s) = \int d\boldsymbol{\vartheta} \mathcal{L}(\boldsymbol{\vartheta}) \mathcal{P}_{\mathrm{exp}}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}}, \boldsymbol{\vartheta}))$$

Ingredient #1: Flavor ratios measured at Earth, $(f_{e,\oplus}, f_{\mu,\oplus}, f_{\tau,\oplus})$ Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Posterior probability of $f_{\alpha,S}$ [MB & Ahlers, *PRL* 2019]:

$$\mathcal{P}(\boldsymbol{f}_{s}) = \int d\boldsymbol{\vartheta} \mathcal{L}(\boldsymbol{\vartheta}) \mathcal{P}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}},\boldsymbol{\vartheta}))$$

Oscillation experiments Neutrino telescopes

Ingredient #1: Flavor ratios measured at Earth, $(f_{e,\oplus}, f_{\mu,\oplus}, f_{\tau,\oplus})$ Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Posterior probability of $f_{\alpha,S}$ [MB & Ahlers, *PRL* 2019]:

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\to\alpha} f_{\beta,\mathrm{S}}$$
$$\mathcal{P}(\boldsymbol{f}_s) = \int d\boldsymbol{\vartheta} \mathcal{L}(\boldsymbol{\vartheta}) \mathcal{P}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}},\boldsymbol{\vartheta}))$$

Oscillation experiments Neutrino telescopes

Inferring the flavor composition at the sources

MB & Ahlers, PRL 2019

Repurpose the flavor sensitivity to test new physics:

Repurpose the flavor sensitivity to test new physics:

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Active-sterile v mixing

[Aeikens *et al., JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al., JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Active-sterile v mixing

[Aeikens *et al.*, *JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al.*, *JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

Long-range ev interactions [MB & Agarwalla, PRL 2019]

```
Reviews:
Mehta & Winter, JCAP 2011; Rasmussen et al., PRD 2017
```


The high-energy flavor charter

NO, upper θ_{23} octant, JUNO + HK $\theta_{00}^{(1)} = \theta_{23}^{(1)} C.R.$ $\theta_{00}^{(2)} = \theta_{00}^{(2)} d.R.$ $\theta_{00}^{(2)} d.R.$ $\theta_{00}^{(2)}$

Fraction of v_e , $f_{e,\oplus}$

Today: Allowed flavor regions at Earth large, imprecise flavor measurements

2030: Allowed flavor regions shrunk, thanks to JUNO + Hyper-K + DUNE

2040: Allowed flavor regions shrunk + precise flavor measurements *Opportunities for astrophysics and particle physics exist throughout!*

Backup slides

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Always in this order: (f_e, f_{μ}, f_{τ})

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Always in this order: (f_e, f_μ, f_τ)

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Always in this order: (f_e, f_{μ}, f_{τ})

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Always in this order: (f_e, f_{μ}, f_{τ})

New (IC 7.5 yr): First identified high-energy astrophysical v_{τ}

IceCube, 2011.03561

New (IC 7.5 yr): First identified high-energy astrophysical v_{τ}

IceCube, 2011.03561

Measuring flavor composition: 2015–2040

Status today:

Measurements are compatible with standard expectations (but errors are large!)

Projections:

Near future (~2020): × **5 reduction** using 8 yr of IC contained + thru.

Coming up (~2040): **× 10 reduction** using Gen2 and all v telescopes

IceCube, PRL 2015, ApJ 2015, PRD 2019, J. Phys. G 2021, 2011.03561

Measuring flavor composition: 2015–2040

Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2021 IceCube, *PRL* 2015, *ApJ* 2015, *PRD* 2019, *J. Phys. G* 2021, 2011.03561

By 2040:

Theory –

Mixing parameters known precisely: allowed flavor regions are *almost* points (already by 2030)

Measurement of flavor ratios – Can distinguish between similar predictions at 99.7% C.R. (3σ)

Can finally use the full power of flavor composition for astrophysics and neutrino physics

No unitarity? *No problem*

The 3×3 active mixing matrix is a non-unitary sub-matrix of a bigger one:

Active flavors

Additional sterile flavors

The elements $|U_{\alpha i}|^2$ for active flavors can be measured *without* assuming unitarity

Because the sub-matrix is not-unitary $(U_{3\nu}^{\dagger}U_{3\nu} \neq 1)$, the "row sum" may be <1

Ellis, Kelly, Li, *JHEP* 2020 Parke & Ross-Lonergan, *PRD* 2016

No unitarity? No problem

Flavor ratios at Earth:

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\alpha} f_{\beta,\mathrm{S}}$$

Same as for standard oscillations...

... but the probability is computed directly using the values of the $|U_{\alpha i}|^2$ (instead of the mixing angles)

No unitarity? No problem
Flavor ratios at Earth:
$$P_{\beta\alpha} = \sum_{i=1,2,3} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\alpha} f_{\beta,S}$$

Same as for standard oscillations...

... but the probability is computed directly using the values of the $|U_{\alpha i}|^2$ (instead of the mixing angles)

Same as for standard oscillations...

... but the probability is computed directly using the values of the $|U_{\alpha i}|^2$ (instead of the mixing angles)

The allowed flavor regions _ are bigger, but *not much bigger*!

No unitarity? No problem

More than one production mechanism?

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

$$f_{\rm S} = k_{\pi} f_{\rm S}^{\pi} + k_{\mu} f_{\rm S}^{\mu} + k_{n} f_{\rm S}^{n}$$

$$\frac{\pi \text{ decay: } \mu \text{ damped: } n \text{ decay: } (1/3, 2/3, 0) \quad (0, 1, 0) \quad (1, 0, 0)$$
Propagate to Earth
$$f_{\oplus}$$

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

1.0

0.8

0.9

1.0

1.0

0.8 0.9

If sources have strong magnetic fields, charged particles cool via synchrotron:

If sources have strong magnetic fields, charged particles cool via synchrotron:

Proton cooling

Induce a high-energy cut-off in the emitted v spectrum:

$$\begin{split} E_{\nu}^{\prime 2} \frac{dN_{\nu}}{dE_{\nu}^{\prime}} &\propto E_{\nu}^{\prime 2-\alpha_{\nu}} e^{-E_{\nu}^{\prime}/E_{\nu}^{\prime \max}} \\ E_{\nu}^{\max} &\approx \frac{10^{10} \Gamma \text{ GeV}}{\sqrt{B^{\prime}/\text{G}}} \qquad \overbrace{p+\gamma(p) \rightarrow \pi^{+} \rightarrow \mu^{+} + \nu_{\mu}} \\ & \downarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} \end{split}$$

If sources have strong magnetic fields, charged particles cool via synchrotron:

Proton cooling

Induce a high-energy cut-off in the emitted v spectrum:

Muon cooling

Change flavor composition:

$$(f_{e,\mathrm{S}}, f_{\mu,\mathrm{S}}, f_{\tau,\mathrm{S}}) = \begin{cases} (\frac{1}{3}, \frac{2}{3}, 0), & \text{if } E_{\nu} < E_{\nu,\mu}^{\mathrm{sync}} \\ (0, 1, 0), & \text{if } E_{\nu} \ge E_{\nu,\mu}^{\mathrm{sync}} \end{cases}$$
$$E_{\nu,\mu}^{\mathrm{sync}} \approx 10^{9} \Gamma \frac{\mathrm{G}}{B'} \mathrm{GeV}$$
$$\rightarrow \pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
$$\downarrow \overline{\nu}_{\mu} + e^{+} + \nu_{e}$$

If sources have strong magnetic fields, charged particles cool via synchrotron:

Proton cooling

Induce a high-energy cut-off in the emitted v spectrum:

$$E_{\nu}^{\prime 2} \frac{dN_{\nu}}{dE_{\nu}^{\prime}} \propto E_{\nu}^{\prime 2 - \alpha_{\nu}} e^{-E_{\nu}^{\prime}/E_{\nu}^{\prime \max}}$$

$$E_{\nu}^{\max} \approx \frac{10^{10} \Gamma \text{ GeV}}{\sqrt{B'/\text{G}}} \qquad (p+\gamma(p) \rightarrow \pi)$$

Muon cooling

Change flavor composition:

$$(f_{e,\mathrm{S}}, f_{\mu,\mathrm{S}}, f_{\tau,\mathrm{S}}) = \begin{cases} (\frac{1}{3}, \frac{2}{3}, 0), & \text{if } E_{\nu} < E_{\nu,\mu}^{\mathrm{sync}} \\ (0, 1, 0), & \text{if } E_{\nu} \ge E_{\nu,\mu}^{\mathrm{sync}} \end{cases}$$
$$E_{\nu,\mu}^{\mathrm{sync}} \approx 10^{9} \Gamma \frac{\mathrm{G}}{B'} \mathrm{GeV}$$
$$\tau^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
$$\rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e}$$

Pion cooling
Steepen the v spectrum:
$$\alpha_{\nu} = \begin{cases} \gamma, & \text{if } E_{\nu} < E_{\nu,\pi}^{\text{sync}} \\ \gamma+2, & \text{if } E_{\nu} \ge E_{\nu,\pi}^{\text{sync}} \end{cases}$$
$$E_{\nu,\pi}^{\text{sync}} \approx 10^{10} \Gamma \frac{\text{G}}{B'} \text{ GeV}$$

See also: Winter, PRD 2013

Energy dependence of the flavor composition?

Different neutrino production channels accessible at different energies –

TP13: py model, target photons from e⁻e⁺ annihilation [Hümmer+, Astropart. Phys. 2010]
 Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]

Energy dependence of flavor ratios – in IceCube-Gen2 Measured:

Energy dependence of flavor ratios – in IceCube-Gen2 Measured: Inferred (at sources):

Flavor composition – a few source choices

Flavor composition – a few source choices

Ackermann, **MB**, *et al.*, Astro2020 Survey (1903.04333) Based on: **MB**, Beacom, Winter *PRL* 2015

Side note: Improving flavor-tagging using *echoes*

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Hadronic vs. electromagnetic showers

Are neutrinos forever?

In the Standard Model (vSM), neutrinos are essentially stable (τ > 10³⁶ yr):
 One-photon decay (v_i → v_j + γ): τ > 10³⁶ (m_i/eV)⁻⁵ yr
 Two-photon decay (v_i → v_j + γ + γ): τ > 10⁵⁷ (m_i/eV)⁻⁹ yr
 Three-neutrino decay (v_i → v_i + v_k + v_k): τ > 10⁵⁵ (m_i/eV)⁻⁵ yr

► BSM decays may have significantly higher rates: $v_i \rightarrow v_j + \phi$

φ: Nambu-Goldstone boson of a broken symmetry (*e.g.*, Majoron)

We work in a model-independent way: the nature of φ is unimportant if it is invisible to neutrino detectors

Flavor content of neutrino mass eigenstates

Neutrinos propagate as an incoherent mix of v_1 , v_2 , v_3 —

Measuring the neutrino lifetime

Earth

Measuring the neutrino lifetime

Earth

Baerwald, **MB**, Winter, *JCAP* 2012

Using unitarity to constrain new physics

 $H_{tot} = H_{std} + H_{NP}$

New mixing angles unconstrained

- Use unitarity $(U_{NP}U_{NP}^{\dagger} = 1)$ to bound all possible flavor ratios at Earth
- Can be used as prior in new-physics searches in IceCube

Ahlers, **MB**, Mu, *PRD* 2018 See also: Xu, He, Rodejohann, *JCAP* 2014

How to fill out the flavor triangle?

 $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}} \qquad (I$ $H_{\text{std}} = \frac{1}{2E} U_{\text{PMNS}}^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^{2}, \Delta m_{31}^{2} \right) U_{\text{PMNS}} \qquad (I$ $H_{\text{NP}} = \sum_{n} \left(\frac{E}{\Lambda_{n}} \right)^{n} U_{n}^{\dagger} \operatorname{diag} \left(O_{n,1}, O_{n,2}, O_{n,3} \right) U_{n}$

This can populate *all* of the triangle –

► Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23}$ GeV, $O_1/\Lambda_1 < 10^{-27}$ GeV

Sample the unknown new mixing angles

How to fill out the flavor triangle?

0.0.1.0 For n = 0 $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ (similar for n = 1) (1:2:0)(1:0:0) $H_{\text{std}} = \frac{1}{2F} U_{\text{PMNS}}^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) U_{\text{PMNS}}$ 8.0 ().2(0:1:0)(0:0:1) $H_{\rm NP} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$ 0.4 0.6 Q E Ø This can populate *all* of the triangle – 0.6 0.4• Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23}$ GeV, $O_1/\Lambda_1 < 10^{-27}$ GeV 0.8 0.2Sample the unknown new mixing angles 0.00.2 0.40.60.8 0.0 1.0 $lpha_{e}^{\,\oplus}$ See also: Ahlers, MB, Mu, PRD 2018; Rasmusen et al., PRD 2017; MB, Beacom, Winter PRL 2015;

MB, Gago, Peña-Garay JCAP 2010; Bazo, **MB**, Gago, Miranda IJMPA 2009; + many others

